(9 intermediate revisions by 3 users not shown) | |||
Line 4: | Line 4: | ||
[[Category:problem solving]] | [[Category:problem solving]] | ||
[[Category:random variables]] | [[Category:random variables]] | ||
+ | [[Category:probability]] | ||
− | = [[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]] | + | <center> |
+ | <font size= 4> | ||
+ | [[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]] | ||
+ | </font size> | ||
+ | |||
+ | <font size= 4> | ||
+ | Communication, Networking, Signal and Image Processing (CS) | ||
+ | |||
+ | Question 1: Probability and Random Processes | ||
+ | </font size> | ||
+ | |||
+ | August 2007 | ||
+ | </center> | ||
+ | ---- | ||
---- | ---- | ||
==Question== | ==Question== | ||
+ | |||
+ | '''1. (25 Points)''' | ||
+ | |||
X and Y are iid random variable with | X and Y are iid random variable with | ||
Line 19: | Line 36: | ||
d) Find <math> P(Y=kX)\ </math>. | d) Find <math> P(Y=kX)\ </math>. | ||
+ | |||
+ | |||
+ | :'''Click [[ECE_PhD_QE_CNSIP_2007_Problem1.1|here]] to view student [[ECE_PhD_QE_CNSIP_2007_Problem1.1|answers and discussions]]''' | ||
+ | |||
---- | ---- | ||
− | + | '''2. (25 Points)''' | |
− | + | Let <math class="inline">\left\{ \mathbf{X}_{n}\right\} _{n\geq1}</math> be a sequence of binomially distributed random variables, with the <math class="inline">n</math> -th random variable <math class="inline">\mathbf{X}_{n}</math> having pmf <math class="inline">p_{\mathbf{X}_{n}}\left(k\right)=P\left(\left\{ \mathbf{X}_{n}=k\right\} \right)=\left(\begin{array}{c} | |
− | + | n\\ | |
+ | k | ||
+ | \end{array}\right)p_{n}^{k}\left(1-p_{n}\right)^{n-k}\;,\qquad k=0,\cdots,n,\quad p_{n}\in\left(0,1\right).</math> | ||
− | + | Show that, if the <math class="inline">p_{n}</math> have the property that <math class="inline">np_{n}\rightarrow\lambda</math> as <math class="inline">n\rightarrow\infty</math> , where <math class="inline">\lambda</math> is a positive constant, then the sequence <math class="inline">\left\{ \mathbf{X}_{n}\right\} _{n\geq1}</math> converges in distribution to a Poisson random variable <math class="inline">\mathbf{X}</math> with mean <math class="inline">\lambda</math> . | |
− | + | '''Hint:''' | |
− | + | ||
− | + | You may find the following fact useful: | |
− | + | ||
− | + | <math class="inline">\lim_{n\rightarrow\infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}.</math> | |
− | + | ||
− | |||
− | + | :'''Click [[ECE_PhD_QE_CNSIP_2007_Problem1.2|here]] to view student [[ECE_PhD_QE_CNSIP_2007_Problem1.2|answers and discussions]]'' | |
+ | ---- | ||
+ | '''3. (25 Points)''' | ||
+ | |||
+ | Let <math class="inline">\mathbf{X}\left(t\right)</math> be a real Gaussian random process with mean function <math class="inline">\mu\left(t\right)</math> and autocovariance function <math class="inline">C_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math> . | ||
+ | |||
+ | '''(a)''' | ||
+ | |||
+ | Write the expression for the <math class="inline">n</math> -th order characteristic function of <math class="inline">\mathbf{X}\left(t\right)</math> in terms of <math class="inline">\mu\left(t\right)</math> and <math class="inline">C_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math> . | ||
+ | |||
+ | ref. | ||
+ | |||
+ | There are the note about the [[ECE 600 General Concepts of Stochastic Processes Definitions|n-th order characteristic function of Gaussians random process]] . The only difference between the note and this problem is that this problem use the <math class="inline">\mu\left(t\right)</math> rather than <math class="inline">\eta_{\mathbf{X}}\left(t\right)=E\left[\mathbf{X}\left(t\right)\right]</math> . | ||
+ | |||
+ | '''Solution''' | ||
+ | |||
+ | <math class="inline">\Phi_{\mathbf{X}\left(t_{1}\right)\cdots\mathbf{X}\left(t_{n}\right)}\left(\omega_{1},\cdots,\omega_{n}\right)=\exp\left\{ i\sum_{k=1}^{n}\mu_{\mathbf{X}}\left(t_{k}\right)\omega_{k}-\frac{1}{2}\sum_{j=1}^{n}\sum_{k=1}^{n}C_{\mathbf{XX}}\left(t_{j},t_{k}\right)\omega_{j}\omega_{k}\right\}</math> . | ||
+ | |||
+ | '''(b)''' | ||
+ | |||
+ | Show that the probabilistic description of <math class="inline">\mathbf{X}\left(t\right)</math> is completely characterized by <math class="inline">\mu\left(t\right)</math> and autocovariance function <math class="inline">C_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math> . | ||
+ | |||
+ | |||
+ | :'''Click [[ECE_PhD_QE_CNSIP_2007_Problem1.3|here]] to view student [[ECE_PhD_QE_CNSIP_2007_Problem1.3|answers and discussions]]'' | ||
+ | ---- | ||
+ | |||
+ | '''4. (25 Points)''' | ||
− | + | Let <math class="inline">\mathbf{X}_{1},\mathbf{X}_{2},\mathbf{X}_{3},\cdots</math> be a sequence of independent, identically distributed random variables, each having Cauchy pdf <math class="inline">f\left(x\right)=\frac{1}{\pi\left(1+x^{2}\right)}\;,\qquad-\infty<x<\infty. Let \mathbf{Y}_{n}=\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i}.</math> Find the pdf of <math class="inline">\mathbf{Y}_{n}</math> . Describe how the pdf of <math class="inline">\mathbf{Y}_{n}</math> depends on <math class="inline">n</math> . Does the sequence <math class="inline">\mathbf{Y}_{1},\mathbf{Y}_{2},\mathbf{Y}_{3},\cdots</math> converge in distribution? If yes, what is the distribution of the random variable it converges to? | |
− | + | ||
− | + | :'''Click [[ECE_PhD_QE_CNSIP_2007_Problem1.4|here]] to view student [[ECE_PhD_QE_CNSIP_2007_Problem1.4|answers and discussions]]'' | |
− | + | ||
− | + | ||
− | + | ||
---- | ---- | ||
− | |||
− | |||
---- | ---- | ||
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]] | [[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]] |
Latest revision as of 09:57, 10 March 2015
Communication, Networking, Signal and Image Processing (CS)
Question 1: Probability and Random Processes
August 2007
Question
1. (25 Points)
X and Y are iid random variable with
$ P(X=i) = P(Y=i) = \frac {1}{2^i}\ ,i = 1,2,3,... $
a) Find $ P(min(X,Y)=k)\ $.
b) Find $ P(X=Y)\ $.
c) Find $ P(Y>X)\ $.
d) Find $ P(Y=kX)\ $.
- Click here to view student answers and discussions
2. (25 Points)
Let $ \left\{ \mathbf{X}_{n}\right\} _{n\geq1} $ be a sequence of binomially distributed random variables, with the $ n $ -th random variable $ \mathbf{X}_{n} $ having pmf $ p_{\mathbf{X}_{n}}\left(k\right)=P\left(\left\{ \mathbf{X}_{n}=k\right\} \right)=\left(\begin{array}{c} n\\ k \end{array}\right)p_{n}^{k}\left(1-p_{n}\right)^{n-k}\;,\qquad k=0,\cdots,n,\quad p_{n}\in\left(0,1\right). $
Show that, if the $ p_{n} $ have the property that $ np_{n}\rightarrow\lambda $ as $ n\rightarrow\infty $ , where $ \lambda $ is a positive constant, then the sequence $ \left\{ \mathbf{X}_{n}\right\} _{n\geq1} $ converges in distribution to a Poisson random variable $ \mathbf{X} $ with mean $ \lambda $ .
Hint:
You may find the following fact useful:
$ \lim_{n\rightarrow\infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}. $
- 'Click here to view student answers and discussions
3. (25 Points)
Let $ \mathbf{X}\left(t\right) $ be a real Gaussian random process with mean function $ \mu\left(t\right) $ and autocovariance function $ C_{\mathbf{XX}}\left(t_{1},t_{2}\right) $ .
(a)
Write the expression for the $ n $ -th order characteristic function of $ \mathbf{X}\left(t\right) $ in terms of $ \mu\left(t\right) $ and $ C_{\mathbf{XX}}\left(t_{1},t_{2}\right) $ .
ref.
There are the note about the n-th order characteristic function of Gaussians random process . The only difference between the note and this problem is that this problem use the $ \mu\left(t\right) $ rather than $ \eta_{\mathbf{X}}\left(t\right)=E\left[\mathbf{X}\left(t\right)\right] $ .
Solution
$ \Phi_{\mathbf{X}\left(t_{1}\right)\cdots\mathbf{X}\left(t_{n}\right)}\left(\omega_{1},\cdots,\omega_{n}\right)=\exp\left\{ i\sum_{k=1}^{n}\mu_{\mathbf{X}}\left(t_{k}\right)\omega_{k}-\frac{1}{2}\sum_{j=1}^{n}\sum_{k=1}^{n}C_{\mathbf{XX}}\left(t_{j},t_{k}\right)\omega_{j}\omega_{k}\right\} $ .
(b)
Show that the probabilistic description of $ \mathbf{X}\left(t\right) $ is completely characterized by $ \mu\left(t\right) $ and autocovariance function $ C_{\mathbf{XX}}\left(t_{1},t_{2}\right) $ .
- 'Click here to view student answers and discussions
4. (25 Points)
Let $ \mathbf{X}_{1},\mathbf{X}_{2},\mathbf{X}_{3},\cdots $ be a sequence of independent, identically distributed random variables, each having Cauchy pdf $ f\left(x\right)=\frac{1}{\pi\left(1+x^{2}\right)}\;,\qquad-\infty<x<\infty. Let \mathbf{Y}_{n}=\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i}. $ Find the pdf of $ \mathbf{Y}_{n} $ . Describe how the pdf of $ \mathbf{Y}_{n} $ depends on $ n $ . Does the sequence $ \mathbf{Y}_{1},\mathbf{Y}_{2},\mathbf{Y}_{3},\cdots $ converge in distribution? If yes, what is the distribution of the random variable it converges to?
- 'Click here to view student answers and discussions