m
Line 27: Line 27:
 
<math> \alpha_{k} = arg\min_{\alpha \ge 0}f(x^{(k)} + \alpha d^{(k)}) .</math>
 
<math> \alpha_{k} = arg\min_{\alpha \ge 0}f(x^{(k)} + \alpha d^{(k)}) .</math>
 
<br>
 
<br>
Suppose that the function we wish to minimize is a standard quadratic of the form,
+
'''Suppose that the function we wish to minimize is a standard quadratic of the form,'''
 
<br>
 
<br>
 
<math> f(x) = \frac{1}{2} x^{T} Qx - x^{T}b+c, Q = Q^{T} > 0. </math>
 
<math> f(x) = \frac{1}{2} x^{T} Qx - x^{T}b+c, Q = Q^{T} > 0. </math>
<br>
+
<br><br>
'''(i)(10 pts) Find the factor by which the uncertainty range is reduced when using the Fibonacci method. Assume that the last step has the form'''
+
'''(i)(10 pts) Find a closed form expression for <math>\alpha_k</math> in terms of <math>Q, H_k, g^{(k)}, and d^{(k)}; </math>'''
<math>  
+
\begin{align}
+
1- \rho_{N-1} = \frac{F_{2}}{F_{3}} = \frac{2}{3},  
+
\end{align}
+
</math>  
+
 
+
'''where <span class="texhtml">''N'' − 1</span> is the number of steps performed in the uncertainty range reduction process. '''
+
 
+
 
<br>  
 
<br>  
 
+
'''(ii)(10 pts) Give a sufficient condition on <math>H_k</math> for <math>\alpha_k</math> to be positive.'''
 
+
<br> '''(ii)(10 pts)''' It is known that the minimizer of a certain function f(x) is located in the interval[-5, 15]. What is the minimal number of iterations of the Fibonacci method required to box in the minimizer within the range 1.0? Assume that the last useful value of the factor reducing the uncertainty range is 2/3, that is
+
 
+
<math> 1- \rho_{N-1} = \frac{F_{2}}{F_{3}} = \frac{2}{3}, </math>  
+
  
 
:'''Click [[QE2012_AC-3_ECE580-1|here]] to view [[QE2012_AC-3_ECE580-1|student answers and discussions]]'''
 
:'''Click [[QE2012_AC-3_ECE580-1|here]] to view [[QE2012_AC-3_ECE580-1|student answers and discussions]]'''
 
----
 
----
  
'''Problem 2. (20pts) Employ the DFP method to construct a set of Q-conjugate directions using the function'''  
+
'''Problem 2. (20 pts) [(i) (10 pts)] Consider the one-point crossover of a chromosome in the schema'''
 
+
<br>
      <math>f = \frac{1}{2}x^TQx - x^Tb+c </math>
+
H = * 1 * 0 1 0 *
      <math> =\frac{1}{2}x^T
+
<br>
\begin{bmatrix}
+
'''where the probability that a chromosome is chosen for crossover is <math>p_c = 0.5.</math> Find an upper bound on the probability that a chromosome from H will be destroyed by the one-point crossover.'''
  1 & 1 \\
+
<br><br>
  1 & 2
+
'''[(ii) (10 pts)] Consider a chromosome in the schema'''
  \end{bmatrix}x-x^T\begin{bmatrix}
+
<br>
  2  \\
+
H = * 1 * 0 * * *
  1
+
<br>
\end{bmatrix} + 3.</math>
+
'''Find the probability that the mutation operation destroys the schema, where the probability of random change of each symbol of the chromosome is <math>p_m = 0.1</math> independently.'''
 
+
Where <span class="texhtml">''x''<sup>(0)</sup></span> is arbitrary.  
+
  
 
:'''Click [[QE2012_AC-3_ECE580-2|here]] to view [[QE2012_AC-3_ECE580-2|student answers and discussions]]'''
 
:'''Click [[QE2012_AC-3_ECE580-2|here]] to view [[QE2012_AC-3_ECE580-2|student answers and discussions]]'''
Line 68: Line 54:
 
----
 
----
  
'''Problem 3. (20pts) For the system of linear equations,<math> Ax=b </math> where '''
+
'''Problem 3. (20 pts) [(i) (10 pts)] Convert the following optimization problem into a linear programming problem and solve it; '''
 
+
<br>
<math>A = \begin{bmatrix}
+
maximize  <math> -|x_1| -|x_2| -|x_3| </math>
   1 & 0 &-1 \\
+
<br>
  0 & 1 & 0 \\
+
subject to
   0 & -1& 0
+
<br>
  \end{bmatrix}, b = \begin{bmatrix}
+
<math>\begin{bmatrix}
   0 \\
+
   1 & 1 &-1  \\
   2 \\
+
   0 & -1 & 0  
 +
  \end{bmatrix} \begin{bmatrix}
 +
   x_1 \\
 +
  x_2 \\
 +
  x_3
 +
\end{bmatrix} = \begin{bmatrix}
 +
   2 \\
 
   1
 
   1
  \end{bmatrix}</math>  
+
  \end{bmatrix} .</math>  
 
+
<br><br>
 
+
'''[(ii) (10 pts)] Construct the dual program of the linear program above and solve it. '''
 
+
'''Find the minimum length vector <math>x^{(\ast)}</math> that minimizes <math>\| Ax -b\|^{2}_2</math> '''
+
  
 
:'''Click [[QE2012_AC-3_ECE580-3|here]] to view [[QE2012_AC-3_ECE580-3|student answers and discussions]]'''  
 
:'''Click [[QE2012_AC-3_ECE580-3|here]] to view [[QE2012_AC-3_ECE580-3|student answers and discussions]]'''  

Revision as of 12:53, 23 January 2015


ECE Ph.D. Qualifying Exam

Automatic Control (AC)

Question 3: Optimization WORK IN PROGRESS

August 2013



Student answers and discussions for Part 1,2,3,4,5

1.(20 pts) In some of the optimization methods, when minimizing a given function f(x), we select an intial guess $ x^{(0)} $ and a real symmetric positive definite matrix $ H_{0} $. Then we computed $ d^{(k)} = -H_{k}g^{(k)} $, where $ g^{(k)} = \nabla f( x^{(k)} ) $, and $ x^{(k+1)} = x^{(k)} + \alpha_{k}d^{(k)} $, where
$ \alpha_{k} = arg\min_{\alpha \ge 0}f(x^{(k)} + \alpha d^{(k)}) . $
Suppose that the function we wish to minimize is a standard quadratic of the form,
$ f(x) = \frac{1}{2} x^{T} Qx - x^{T}b+c, Q = Q^{T} > 0. $

(i)(10 pts) Find a closed form expression for $ \alpha_k $ in terms of $ Q, H_k, g^{(k)}, and d^{(k)}; $
(ii)(10 pts) Give a sufficient condition on $ H_k $ for $ \alpha_k $ to be positive.

Click here to view student answers and discussions

Problem 2. (20 pts) [(i) (10 pts)] Consider the one-point crossover of a chromosome in the schema
H = * 1 * 0 1 0 *
where the probability that a chromosome is chosen for crossover is $ p_c = 0.5. $ Find an upper bound on the probability that a chromosome from H will be destroyed by the one-point crossover.

[(ii) (10 pts)] Consider a chromosome in the schema
H = * 1 * 0 * * *
Find the probability that the mutation operation destroys the schema, where the probability of random change of each symbol of the chromosome is $ p_m = 0.1 $ independently.

Click here to view student answers and discussions

Problem 3. (20 pts) [(i) (10 pts)] Convert the following optimization problem into a linear programming problem and solve it;
maximize $ -|x_1| -|x_2| -|x_3| $
subject to
$ \begin{bmatrix} 1 & 1 &-1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} . $

[(ii) (10 pts)] Construct the dual program of the linear program above and solve it.

Click here to view student answers and discussions

Problem 4. (20pts) Use any simplex method to solve the following linear program.

           Maximize    x1 + 2x2
        S'ubject to    $ -2x_1+x_2 \le 2 $
                       $ x_1-x_2 \ge -3 $
                       $ x_1 \le -3 $
                       $ x_1 \ge 0, x_2 \ge 0. $
Click here to view student answers and discussions


Problem 5.(20pts) Solve the following problem:

           Minimize    $ -x_1^2 + 2x_2 $
        Subject to    $ x_1^2+x_2^2 \le 1 $
                       $  x_1 \ge 0 $
                       $ x_2 \ge 0 $

(i)(10pts) Find the points that satisfy the KKT condition.



(ii)(10pts)Apply the SONC and SOSC to determine the nature of the critical points from the previous part.

Click here to view student answers and discussions

Back to ECE QE page

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn