(15 intermediate revisions by 3 users not shown)
Line 9: Line 9:
 
</font size>
 
</font size>
  
A [https://www.projectrhea.org/learning/slectures.php slecture] by graduate student Keehwan Park
+
A [http://www.projectrhea.org/learning/slectures.php slecture] by graduate student Keehwan Park
  
Loosely based on the [[2014_Spring_ECE_662_Boutin|ECE662 Spring 2014 lecture]] material of [[user:mboutin|Prof. Mireille Boutin]].  
+
Loosely based on the [[2014_Spring_ECE_662_Boutin_Statistical_Pattern_recognition_slectures|ECE662 Spring 2014 lecture]] material of [[user:mboutin|Prof. Mireille Boutin]].  
 
</center>
 
</center>
 
----
 
----
 
----
 
----
 
==Part 1: Basic Setup==
 
==Part 1: Basic Setup==
 +
[http://youtu.be/YeYpWL7LKUs Link to Video on Youtube]
 +
<center>
 +
<youtube>YeYpWL7LKUs</youtube>
 +
</center>
 
----
 
----
 
==Part 2: Properties of MLE==
 
==Part 2: Properties of MLE==
 +
[http://youtu.be/iQzfGPXGkQ4 Link to Video on Youtube]
 +
 +
<center>
 +
<youtube>iQzfGPXGkQ4</youtube>
 +
</center>
 
----
 
----
 
==Part 3: Examples of MLE (Analytically Tractable Cases)==
 
==Part 3: Examples of MLE (Analytically Tractable Cases)==
 +
*Binomial(<math>n=1</math>,<math>p</math>)
 +
::[http://youtu.be/Yz2zJgNnXMM Link to Video on Youtube]
 +
<center>
 +
<youtube>Yz2zJgNnXMM</youtube>
 +
</center>
 +
 +
*Gamma(<math>k=2</math>,<math>\theta</math>)
 +
::[http://youtu.be/GyEYKasQTFg Link to Video on Youtube]
 +
<center>
 +
<youtube>GyEYKasQTFg</youtube>
 +
</center>
 +
 +
*Normal(<math>\mu=0</math>, <math>\sigma^2</math>)
 +
::[http://youtu.be/w8YhiTAX4Cg Link to Video on Youtube]
 +
 +
<center>
 +
<youtube>w8YhiTAX4Cg</youtube>
 +
</center>
 
----
 
----
 
==Part 4: Summary of MLE and Numerical Optimization Options==
 
==Part 4: Summary of MLE and Numerical Optimization Options==
 +
[http://youtu.be/y6wtaX5GyXE Link to Video on Youtube]
 +
 +
<center>
 +
<youtube>y6wtaX5GyXE</youtube>
 +
</center>
 
----
 
----
 
==References==
 
==References==
Line 29: Line 61:
 
*Panchenko, Dmitry. "[http://ocw.mit.edu/courses/mathematics/18-443-statistics-for-applications-fall-2006/lecture-notes/lecture3.pdf Lecture 3: Properties of MLE: consistency, asymptotic normality. Fisher information]," "18-443: Statistics for Applications,"  MIT, Fall 2006.
 
*Panchenko, Dmitry. "[http://ocw.mit.edu/courses/mathematics/18-443-statistics-for-applications-fall-2006/lecture-notes/lecture3.pdf Lecture 3: Properties of MLE: consistency, asymptotic normality. Fisher information]," "18-443: Statistics for Applications,"  MIT, Fall 2006.
 
*Golder, Matt, "[https://files.nyu.edu/mrg217/public/mle_introduction1.pdf Maximum Likelihood Estimation (MLE)]," Pennsylvania State University.
 
*Golder, Matt, "[https://files.nyu.edu/mrg217/public/mle_introduction1.pdf Maximum Likelihood Estimation (MLE)]," Pennsylvania State University.
 
+
*Dietze, Michael, "[http://www.life.illinois.edu/dietze/Lectures2012/Lesson07_Optim.pdf Lesson 7 Intractable MLEs: Basics of Numerical Optimization]," "Statistical Modeling", University of Illinois at Urbana-Champaign.
 
*"[http://www.itl.nist.gov/div898/handbook/eda/section3/eda3652.htm 1.3.6.5.2. Maximum Likelihood.]" N.p., n.d. Web. 29 Apr. 2014.
 
*"[http://www.itl.nist.gov/div898/handbook/eda/section3/eda3652.htm 1.3.6.5.2. Maximum Likelihood.]" N.p., n.d. Web. 29 Apr. 2014.
 +
*"Maximum likelihood." Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc. 26 April 2014. Web. 29 Apr. 2014.
 +
*"Cramér–Rao bound." Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc. 28 October 2013. Web. 29 Apr. 2014.
 +
*"Expectation–maximization algorithm." Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc. 3 April 2014. Web. 29 Apr. 2014.
 +
*C. Couvreur. The EM algorithm: A guided tour. In Proc. 2d IEEE European Workshop on Computationaly Intensive Methods in Control and Signal Processing (CMP’96), pages 115–120, Pragues, Czech Republik, August 1996.
 
----
 
----
 
----
 
----
==Comments/Feedback==
+
==[[SlectureKeehwanECE662Spring14Review|Review and Comments]]==
*Write comment here.
+
**reply here.
+
*Write another comment here.
+
 
----
 
----
 
[[2014_Spring_ECE_662_Boutin|Back to ECE662, Spring 2014]]
 
[[2014_Spring_ECE_662_Boutin|Back to ECE662, Spring 2014]]

Latest revision as of 09:50, 22 January 2015


Maximum Likelihood Estimation (MLE): its properties and examples

A slecture by graduate student Keehwan Park

Loosely based on the ECE662 Spring 2014 lecture material of Prof. Mireille Boutin.



Part 1: Basic Setup

Link to Video on Youtube


Part 2: Properties of MLE

Link to Video on Youtube


Part 3: Examples of MLE (Analytically Tractable Cases)

  • Binomial($ n=1 $,$ p $)
Link to Video on Youtube

  • Gamma($ k=2 $,$ \theta $)
Link to Video on Youtube

  • Normal($ \mu=0 $, $ \sigma^2 $)
Link to Video on Youtube


Part 4: Summary of MLE and Numerical Optimization Options

Link to Video on Youtube


References

  • Mireille Boutin, "ECE662: Statistical Pattern Recognition and Decision Making Processes," Purdue University, Spring 2014.
  • R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification, Wiley New York, 2nd Edition, 2000.
  • Myung, In Jae. "Tutorial on Maximum Likelihood Estimation." Journal of Mathematical Psychology 47.1 (2003): 90-100. Print.
  • Panchenko, Dmitry. "Lecture 3: Properties of MLE: consistency, asymptotic normality. Fisher information," "18-443: Statistics for Applications," MIT, Fall 2006.
  • Golder, Matt, "Maximum Likelihood Estimation (MLE)," Pennsylvania State University.
  • Dietze, Michael, "Lesson 7 Intractable MLEs: Basics of Numerical Optimization," "Statistical Modeling", University of Illinois at Urbana-Champaign.
  • "1.3.6.5.2. Maximum Likelihood." N.p., n.d. Web. 29 Apr. 2014.
  • "Maximum likelihood." Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc. 26 April 2014. Web. 29 Apr. 2014.
  • "Cramér–Rao bound." Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc. 28 October 2013. Web. 29 Apr. 2014.
  • "Expectation–maximization algorithm." Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc. 3 April 2014. Web. 29 Apr. 2014.
  • C. Couvreur. The EM algorithm: A guided tour. In Proc. 2d IEEE European Workshop on Computationaly Intensive Methods in Control and Signal Processing (CMP’96), pages 115–120, Pragues, Czech Republik, August 1996.


Review and Comments


Back to ECE662, Spring 2014

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010