(10 intermediate revisions by the same user not shown) | |||
Line 15: | Line 15: | ||
<br> | <br> | ||
− | {| class="wikitable" border="1" style="text-align: center; width: | + | {| class="wikitable" border="1" style="text-align: center; width: 800px;" |
− | |+ Commands helpful while doing the practice problems | + | |+ Commands helpful while doing the practice problems |
|- style="height: 40px;" | |- style="height: 40px;" | ||
! scope="col" | Description | ! scope="col" | Description | ||
Line 30: | Line 30: | ||
| \sum_{k=0}^\infty x[n]\delta [n-k] | | \sum_{k=0}^\infty x[n]\delta [n-k] | ||
|- style="height: 30px;" | |- style="height: 30px;" | ||
− | | ''Fractions'' | + | | ''Fractions'' |
− | | <math>y=x^2/2 +\frac{x}{\phi}</math> | + | | <math>y=x^2/2 +\frac{x}{\phi}</math> |
− | |y=x^2/2 +\frac{x}{\phi} | + | | y=x^2/2 +\frac{x}{\phi} |
+ | |- style="height: 30px;" | ||
+ | | ''Integrals'' | ||
+ | | <math>\int\limits_{\alpha}^{\beta}e^\tau\ d\tau</math> | ||
+ | | \int\limits_{\alpha}^{\beta}e^\tau\ d\tau | ||
+ | |- style="height: 30px;" | ||
+ | | ''Braces and Script Characters'' | ||
+ | | <math>\mathcal{F }\left \{ rect(t) \right \}, \mathcal{X}(\omega)</math> | ||
+ | | \mathcal{F }\left \{ rect(t) \right \}, \mathcal{X}(\omega) | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| class="wikitable" border="1" style="text-align: center; width: 800px;" | ||
+ | |+ How to Format a Long Equation | ||
+ | |- | ||
+ | ! scope="col" | What it looks like | ||
+ | ! scope="col" | What you type | ||
+ | |- | ||
+ | | <math>\begin{align} | ||
+ | f(x) &= \int\limits_{0}^{2\pi} sin^2(\theta) \ d\theta \\ &= \int\limits_{0}^{2\pi} \big(1-cos^2(\theta) \big)\ d\theta \\ &= \int\limits_{0}^{2\pi} \bigg( 1-\Big(\frac{1}{2} +\frac{1}{2} cos(2\theta)\Big) \bigg)\ d\theta \\ &= \int\limits_{0}^{2\pi} \frac{1}{2}\ d\theta -\frac{1}{2} \int\limits_{0}^{2\pi} cos(2\theta) \ d\theta \\ &= \pi \end{align}</math> | ||
+ | | <nowiki>\begin{align} </nowiki> <br> <br> | ||
+ | <nowiki> f(x) &= \int\limits_{0}^{2\pi} sin^2(\theta) \ d\theta \\ </nowiki> <br> <br> | ||
+ | <nowiki>&= \int\limits_{0}^{2\pi} \big(1-cos^2(\theta) \big)\ d\theta \\ </nowiki> <br> <br> | ||
+ | <nowiki>&= \int\limits_{0}^{2\pi} \bigg( 1-\Big(\frac{1}{2}</nowiki> +<br> <nowiki>\frac{1}{2} cos(2\theta)\Big) \bigg)\ d\theta \\ </nowiki> <br> <br> | ||
+ | <nowiki> &= \int\limits_{0}^{2\pi} \frac{1}{2}\ d\theta</nowiki> -<br> <nowiki>\frac{1}{2} \int\limits_{0}^{2\pi} cos(2\theta) \ d\theta \\ </nowiki> <br> <br> | ||
+ | <nowiki>&= \pi \end{align}</nowiki> | ||
|} | |} | ||
+ | |||
+ | |||
+ | [[2011_Fall_ECE_438_Boutin|ECE438 Fall 2011 Homepage]] |
Latest revision as of 10:27, 30 September 2014
How to Enter Math in Rhea
This page shows many of the functions and symbols that you are likely to need while working on the practice problems. *hint hint
Basics of Rhea/Wiki Math
Math in Rhea is written using the Latex commands. To begin, you need use the math tags like: <math> formulas </math>.
Resources
You should know that there is a host of resources already to help you along. One great page on Rhea is How to type Math Equations. Another resource is Wikipedia's page on Functions, Symbols, and Special Characters.
Description | What it looks like | What you type |
---|---|---|
Summations | $ \sum_{n=-\infty}^\infty x[n]e^{-j2\pi f} $ | \sum_{n=-\infty}^\infty x[n]e^{-j2\pi f} |
Summations with Delta | $ \sum_{k=0}^\infty x[n]\delta [n-k] $ | \sum_{k=0}^\infty x[n]\delta [n-k] |
Fractions | $ y=x^2/2 +\frac{x}{\phi} $ | y=x^2/2 +\frac{x}{\phi} |
Integrals | $ \int\limits_{\alpha}^{\beta}e^\tau\ d\tau $ | \int\limits_{\alpha}^{\beta}e^\tau\ d\tau |
Braces and Script Characters | $ \mathcal{F }\left \{ rect(t) \right \}, \mathcal{X}(\omega) $ | \mathcal{F }\left \{ rect(t) \right \}, \mathcal{X}(\omega) |
What it looks like | What you type |
---|---|
$ \begin{align} f(x) &= \int\limits_{0}^{2\pi} sin^2(\theta) \ d\theta \\ &= \int\limits_{0}^{2\pi} \big(1-cos^2(\theta) \big)\ d\theta \\ &= \int\limits_{0}^{2\pi} \bigg( 1-\Big(\frac{1}{2} +\frac{1}{2} cos(2\theta)\Big) \bigg)\ d\theta \\ &= \int\limits_{0}^{2\pi} \frac{1}{2}\ d\theta -\frac{1}{2} \int\limits_{0}^{2\pi} cos(2\theta) \ d\theta \\ &= \pi \end{align} $ | \begin{align} f(x) &= \int\limits_{0}^{2\pi} sin^2(\theta) \ d\theta \\ |