(New page: Category:ECE438Fall2014Boutin Category:ECE438 Category:ECE Category:fourier transform Category:homework =Homework 1 Solution, ECE438, Fall 2014, [[user:mboutin|Pro...) |
|||
(7 intermediate revisions by 2 users not shown) | |||
Line 6: | Line 6: | ||
=Homework 1 Solution, [[ECE438]], Fall 2014, [[user:mboutin|Prof. Boutin]]= | =Homework 1 Solution, [[ECE438]], Fall 2014, [[user:mboutin|Prof. Boutin]]= | ||
+ | Note: Please pay attention to the difference between <math>X \ </math> and <math>{\mathcal X}</math>. | ||
---- | ---- | ||
===A complex exponential=== | ===A complex exponential=== | ||
<math> x(t)=e^{j2 \pi f_0 t} </math> | <math> x(t)=e^{j2 \pi f_0 t} </math> | ||
+ | |||
+ | From [[CTFourierTransformPairsCollectedfromECE301withomega| table]], <math>{\mathcal X} (\omega)= 2\pi \delta(\omega - \omega_0)</math>, therefore <br> | ||
+ | <math> | ||
+ | \begin{align} | ||
+ | X(f) & = {\mathcal X} (2 \pi f)\\ | ||
+ | &= 2\pi \delta(2\pi f - 2\pi f_0) \\ | ||
+ | &=\delta(f - f_0), | ||
+ | \end{align} | ||
+ | </math><br> | ||
+ | where the last line follows from the [[Homework_3_ECE438F09| scaling property of the Dirac delta]] distribution. | ||
---- | ---- | ||
− | + | ===A sine=== | |
− | -- | + | <math>x(t)=\sin (2\pi f_0 t) </math> |
− | + | ||
− | ---- | + | From [[CTFourierTransformPairsCollectedfromECE301withomega| table]], <math>{\mathcal X} (\omega)= \frac{\pi}{i} \left[\delta (\omega - \omega_0) - \delta (\omega + \omega_0)\right]</math>, therefore <br> |
− | + | <math> | |
− | + | \begin{align} | |
− | + | X(f) & = {\mathcal X} (2 \pi f)\\ | |
+ | &= \frac{2 \pi}{2j} \delta (2\pi f - 2\pi f_0) - \frac{2 \pi}{2 j} \delta(2\pi f + 2 \pi f_0) \\ | ||
+ | &=\frac{1}{2j}\delta(f-f_0) - \frac{1}{2j}\delta(f+f_0) , | ||
+ | \end{align} | ||
+ | </math><br> | ||
+ | where the last line follows from the [[Homework_3_ECE438F09| scaling property of the Dirac delta]] distribution. | ||
+ | |||
---- | ---- | ||
+ | ===A cosine=== | ||
+ | <math>x(t)=\cos (2\pi f_0 t) </math> | ||
+ | From [[CTFourierTransformPairsCollectedfromECE301withomega| table]], <math>{\mathcal X} (\omega)= \pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right]</math>, therefore <br> | ||
+ | <math> | ||
+ | \begin{align} | ||
+ | X(f) & = {\mathcal X} (2 \pi f)\\ | ||
+ | &= \frac{2 \pi}{2 } \delta (2\pi f - 2\pi f_0) + \frac{2 \pi}{2 } \delta(2\pi f + 2 \pi f_0) \\ | ||
+ | &=\frac{1}{2}\delta(f-f_0) + \frac{1}{2}\delta(f+f_0) , | ||
+ | \end{align} | ||
+ | </math><br> | ||
+ | where the last line follows from the [[Homework_3_ECE438F09| scaling property of the Dirac delta]] distribution. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
---- | ---- | ||
+ | ===A periodic function=== | ||
+ | <math>x(t)=\sum_{k=-\infty}^{\infty} a_k e^{jk2\pi f_0 t}</math> <br> | ||
+ | From the [https://www.projectrhea.org/rhea/index.php/CTFourierTransformPairsCollectedfromECE301withomega table], we have the transform pair:<br> | ||
+ | <math>\sum_{k=-\infty}^{\infty} a_k e^{j\omega_0t} \leftrightarrow 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega-k\omega_0)</math> <br> | ||
+ | Therefore, using the definition that <math>\omega=2\pi f</math>:<br> | ||
+ | <math> | ||
+ | \begin{align} | ||
+ | \sum_{k=-\infty}^{\infty} a_k e^{j2\pi f_0t} \leftrightarrow &2\pi \sum_{k=-\infty}^{\infty} a_k \delta(2\pi f-k2\pi f_0) \\ | ||
+ | &=\sum_{k=-\infty}^{\infty} a_k \delta(f-k f_0) \mbox{, by the scaling property of the delta} | ||
+ | \end{align} | ||
+ | </math> <br> | ||
+ | |||
+ | ---- | ||
+ | ===An impulse train=== | ||
+ | <math>x(t)=\sum_{n=-\infty}^{\infty} \delta (t-nT)</math><br> | ||
+ | From the [https://www.projectrhea.org/rhea/index.php/CTFourierTransformPairsCollectedfromECE301withomega table], we have the transform pair:<br> | ||
+ | <math>\sum_{n=-\infty}^{\infty} \delta (t-nT) \leftrightarrow \frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta \left ( \omega - \frac{2\pi k}{T} \right )</math> <br> | ||
+ | Therefore, using the definition that <math>\omega=2\pi f</math>:<br> | ||
+ | <math> | ||
+ | \begin{align} | ||
+ | \sum_{n=-\infty}^{\infty} \delta (t-nT) \leftrightarrow &\frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta \left ( 2\pi f- \frac{2\pi k}{T} \right ) \\ | ||
+ | &=\frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left (f- \frac{k}{T} \right ) \mbox{, using the scaling property of the delta} | ||
+ | \end{align} | ||
+ | </math> | ||
+ | ---- | ||
+ | |||
== Discussion == | == Discussion == | ||
You may discuss the homework below. | You may discuss the homework below. |
Latest revision as of 04:31, 22 September 2014
Contents
Homework 1 Solution, ECE438, Fall 2014, Prof. Boutin
Note: Please pay attention to the difference between $ X \ $ and $ {\mathcal X} $.
A complex exponential
$ x(t)=e^{j2 \pi f_0 t} $
From table, $ {\mathcal X} (\omega)= 2\pi \delta(\omega - \omega_0) $, therefore
$ \begin{align} X(f) & = {\mathcal X} (2 \pi f)\\ &= 2\pi \delta(2\pi f - 2\pi f_0) \\ &=\delta(f - f_0), \end{align} $
where the last line follows from the scaling property of the Dirac delta distribution.
A sine
$ x(t)=\sin (2\pi f_0 t) $
From table, $ {\mathcal X} (\omega)= \frac{\pi}{i} \left[\delta (\omega - \omega_0) - \delta (\omega + \omega_0)\right] $, therefore
$ \begin{align} X(f) & = {\mathcal X} (2 \pi f)\\ &= \frac{2 \pi}{2j} \delta (2\pi f - 2\pi f_0) - \frac{2 \pi}{2 j} \delta(2\pi f + 2 \pi f_0) \\ &=\frac{1}{2j}\delta(f-f_0) - \frac{1}{2j}\delta(f+f_0) , \end{align} $
where the last line follows from the scaling property of the Dirac delta distribution.
A cosine
$ x(t)=\cos (2\pi f_0 t) $
From table, $ {\mathcal X} (\omega)= \pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right] $, therefore
$ \begin{align} X(f) & = {\mathcal X} (2 \pi f)\\ &= \frac{2 \pi}{2 } \delta (2\pi f - 2\pi f_0) + \frac{2 \pi}{2 } \delta(2\pi f + 2 \pi f_0) \\ &=\frac{1}{2}\delta(f-f_0) + \frac{1}{2}\delta(f+f_0) , \end{align} $
where the last line follows from the scaling property of the Dirac delta distribution.
A periodic function
$ x(t)=\sum_{k=-\infty}^{\infty} a_k e^{jk2\pi f_0 t} $
From the table, we have the transform pair:
$ \sum_{k=-\infty}^{\infty} a_k e^{j\omega_0t} \leftrightarrow 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega-k\omega_0) $
Therefore, using the definition that $ \omega=2\pi f $:
$ \begin{align} \sum_{k=-\infty}^{\infty} a_k e^{j2\pi f_0t} \leftrightarrow &2\pi \sum_{k=-\infty}^{\infty} a_k \delta(2\pi f-k2\pi f_0) \\ &=\sum_{k=-\infty}^{\infty} a_k \delta(f-k f_0) \mbox{, by the scaling property of the delta} \end{align} $
An impulse train
$ x(t)=\sum_{n=-\infty}^{\infty} \delta (t-nT) $
From the table, we have the transform pair:
$ \sum_{n=-\infty}^{\infty} \delta (t-nT) \leftrightarrow \frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta \left ( \omega - \frac{2\pi k}{T} \right ) $
Therefore, using the definition that $ \omega=2\pi f $:
$ \begin{align} \sum_{n=-\infty}^{\infty} \delta (t-nT) \leftrightarrow &\frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta \left ( 2\pi f- \frac{2\pi k}{T} \right ) \\ &=\frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left (f- \frac{k}{T} \right ) \mbox{, using the scaling property of the delta} \end{align} $
Discussion
You may discuss the homework below.
- write comment/question here
- answer will go here