(New page: Category:ECE438Fall2014Boutin Category:ECE438 Category:ECE Category:fourier transform Category:homework =Homework 1 Solution, ECE438, Fall 2014, [[user:mboutin|Pro...)
 
 
(7 intermediate revisions by 2 users not shown)
Line 6: Line 6:
  
 
=Homework 1 Solution, [[ECE438]], Fall 2014, [[user:mboutin|Prof. Boutin]]=
 
=Homework 1 Solution, [[ECE438]], Fall 2014, [[user:mboutin|Prof. Boutin]]=
 +
Note: Please pay attention to the difference between <math>X \ </math> and <math>{\mathcal X}</math>.
  
 
----
 
----
 
===A complex exponential===
 
===A complex exponential===
 
<math> x(t)=e^{j2 \pi f_0 t} </math>
 
<math> x(t)=e^{j2 \pi f_0 t} </math>
 +
 +
From [[CTFourierTransformPairsCollectedfromECE301withomega|  table]], <math>{\mathcal X} (\omega)= 2\pi \delta(\omega - \omega_0)</math>, therefore <br>
 +
<math>
 +
\begin{align}
 +
X(f) & = {\mathcal X} (2 \pi f)\\
 +
&= 2\pi \delta(2\pi f - 2\pi f_0) \\
 +
&=\delta(f - f_0),
 +
\end{align}
 +
</math><br>
 +
where the last line follows from the [[Homework_3_ECE438F09| scaling property of the Dirac delta]] distribution.
 
----
 
----
*a sine  
+
===A sine===
----
+
<math>x(t)=\sin (2\pi f_0 t) </math>
*A cosine
+
 
----
+
From [[CTFourierTransformPairsCollectedfromECE301withomega|  table]], <math>{\mathcal X} (\omega)= \frac{\pi}{i} \left[\delta (\omega - \omega_0) - \delta (\omega + \omega_0)\right]</math>, therefore <br>
*A periodic function
+
<math>
----
+
\begin{align}
*An impulse train
+
X(f) & = {\mathcal X} (2 \pi f)\\
 +
&= \frac{2 \pi}{2j} \delta (2\pi f - 2\pi f_0) - \frac{2 \pi}{2 j} \delta(2\pi f + 2 \pi f_0)  \\
 +
&=\frac{1}{2j}\delta(f-f_0) - \frac{1}{2j}\delta(f+f_0) ,
 +
\end{align}
 +
</math><br>
 +
where the last line follows from the [[Homework_3_ECE438F09| scaling property of the Dirac delta]] distribution.
 +
 
 
----
 
----
 +
===A cosine===
 +
<math>x(t)=\cos (2\pi f_0 t) </math>
  
 +
From [[CTFourierTransformPairsCollectedfromECE301withomega|  table]], <math>{\mathcal X} (\omega)= \pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right]</math>, therefore <br>
 +
<math>
 +
\begin{align}
 +
X(f) & = {\mathcal X} (2 \pi f)\\
 +
&=  \frac{2 \pi}{2 } \delta (2\pi f - 2\pi f_0) + \frac{2 \pi}{2 } \delta(2\pi f + 2 \pi f_0)  \\
 +
&=\frac{1}{2}\delta(f-f_0) + \frac{1}{2}\delta(f+f_0) ,
 +
\end{align}
 +
</math><br>
 +
where the last line follows from the [[Homework_3_ECE438F09| scaling property of the Dirac delta]] distribution.
  
Note: '''You will get zero credit if you simply write down the answers without any justification.'''
 
  
== Presentation Guidelines ==
 
* Write only on one side of the paper.
 
* Use a "clean" sheet of paper (e.g., not torn out of a spiral book).
 
* Staple the pages together.
 
* Include a cover page.
 
* Do not let your dog play with your homework.
 
 
----
 
----
 +
===A periodic function===
 +
<math>x(t)=\sum_{k=-\infty}^{\infty} a_k e^{jk2\pi f_0 t}</math> <br>
 +
From the [https://www.projectrhea.org/rhea/index.php/CTFourierTransformPairsCollectedfromECE301withomega  table], we have the transform pair:<br>
 +
<math>\sum_{k=-\infty}^{\infty} a_k e^{j\omega_0t} \leftrightarrow 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega-k\omega_0)</math> <br>
 +
Therefore, using the definition that <math>\omega=2\pi f</math>:<br>
 +
<math>
 +
\begin{align}
 +
\sum_{k=-\infty}^{\infty} a_k e^{j2\pi f_0t} \leftrightarrow &2\pi \sum_{k=-\infty}^{\infty} a_k \delta(2\pi f-k2\pi f_0) \\
 +
&=\sum_{k=-\infty}^{\infty} a_k \delta(f-k f_0) \mbox{, by the scaling property of the delta}
 +
\end{align}
 +
</math> <br>
 +
 +
----
 +
===An impulse train===
 +
<math>x(t)=\sum_{n=-\infty}^{\infty} \delta (t-nT)</math><br>
 +
From the [https://www.projectrhea.org/rhea/index.php/CTFourierTransformPairsCollectedfromECE301withomega  table], we have the transform pair:<br>
 +
<math>\sum_{n=-\infty}^{\infty} \delta (t-nT) \leftrightarrow \frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta \left ( \omega - \frac{2\pi k}{T} \right )</math> <br>
 +
Therefore, using the definition that <math>\omega=2\pi f</math>:<br>
 +
<math>
 +
\begin{align}
 +
\sum_{n=-\infty}^{\infty} \delta (t-nT) \leftrightarrow &\frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta \left ( 2\pi f- \frac{2\pi k}{T} \right ) \\
 +
&=\frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left (f- \frac{k}{T} \right ) \mbox{, using the scaling property of the delta}
 +
\end{align}
 +
</math>
 +
----
 +
 
== Discussion ==
 
== Discussion ==
 
You may discuss the homework below.
 
You may discuss the homework below.

Latest revision as of 04:31, 22 September 2014


Homework 1 Solution, ECE438, Fall 2014, Prof. Boutin

Note: Please pay attention to the difference between $ X \ $ and $ {\mathcal X} $.


A complex exponential

$ x(t)=e^{j2 \pi f_0 t} $

From table, $ {\mathcal X} (\omega)= 2\pi \delta(\omega - \omega_0) $, therefore
$ \begin{align} X(f) & = {\mathcal X} (2 \pi f)\\ &= 2\pi \delta(2\pi f - 2\pi f_0) \\ &=\delta(f - f_0), \end{align} $
where the last line follows from the scaling property of the Dirac delta distribution.


A sine

$ x(t)=\sin (2\pi f_0 t) $

From table, $ {\mathcal X} (\omega)= \frac{\pi}{i} \left[\delta (\omega - \omega_0) - \delta (\omega + \omega_0)\right] $, therefore
$ \begin{align} X(f) & = {\mathcal X} (2 \pi f)\\ &= \frac{2 \pi}{2j} \delta (2\pi f - 2\pi f_0) - \frac{2 \pi}{2 j} \delta(2\pi f + 2 \pi f_0) \\ &=\frac{1}{2j}\delta(f-f_0) - \frac{1}{2j}\delta(f+f_0) , \end{align} $
where the last line follows from the scaling property of the Dirac delta distribution.


A cosine

$ x(t)=\cos (2\pi f_0 t) $

From table, $ {\mathcal X} (\omega)= \pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right] $, therefore
$ \begin{align} X(f) & = {\mathcal X} (2 \pi f)\\ &= \frac{2 \pi}{2 } \delta (2\pi f - 2\pi f_0) + \frac{2 \pi}{2 } \delta(2\pi f + 2 \pi f_0) \\ &=\frac{1}{2}\delta(f-f_0) + \frac{1}{2}\delta(f+f_0) , \end{align} $
where the last line follows from the scaling property of the Dirac delta distribution.



A periodic function

$ x(t)=\sum_{k=-\infty}^{\infty} a_k e^{jk2\pi f_0 t} $
From the table, we have the transform pair:
$ \sum_{k=-\infty}^{\infty} a_k e^{j\omega_0t} \leftrightarrow 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega-k\omega_0) $
Therefore, using the definition that $ \omega=2\pi f $:
$ \begin{align} \sum_{k=-\infty}^{\infty} a_k e^{j2\pi f_0t} \leftrightarrow &2\pi \sum_{k=-\infty}^{\infty} a_k \delta(2\pi f-k2\pi f_0) \\ &=\sum_{k=-\infty}^{\infty} a_k \delta(f-k f_0) \mbox{, by the scaling property of the delta} \end{align} $


An impulse train

$ x(t)=\sum_{n=-\infty}^{\infty} \delta (t-nT) $
From the table, we have the transform pair:
$ \sum_{n=-\infty}^{\infty} \delta (t-nT) \leftrightarrow \frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta \left ( \omega - \frac{2\pi k}{T} \right ) $
Therefore, using the definition that $ \omega=2\pi f $:
$ \begin{align} \sum_{n=-\infty}^{\infty} \delta (t-nT) \leftrightarrow &\frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta \left ( 2\pi f- \frac{2\pi k}{T} \right ) \\ &=\frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left (f- \frac{k}{T} \right ) \mbox{, using the scaling property of the delta} \end{align} $


Discussion

You may discuss the homework below.

  • write comment/question here
    • answer will go here

Back to ECE438, Fall 2014, Prof. Boutin

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman