Line 48: Line 48:
 
----
 
----
 
===A periodic function===
 
===A periodic function===
<math>x(t)=x(t-T)</math>
+
<math>x(t)=\sum_{k=-\infty}^{\infty} a_k e^{jk2\pi f_0 t}</math> <br>
 +
From the [https://www.projectrhea.org/rhea/index.php/CTFourierTransformPairsCollectedfromECE301withomega  table], we have the transform pair:<br>
 +
<math>\sum_{k=-\infty}^{\infty} a_k e^{j\omega_0t} \leftrightarrow 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega-k\omega_0)</math> <br>
 +
Therefore, using the definition that <math>\omega=2\pi f</math>:<br>
 +
<math>
 +
\begin{align}
 +
\sum_{k=-\infty}^{\infty} a_k e^{j2\pi f_0t} \leftrightarrow &2\pi \sum_{k=-\infty}^{\infty} a_k \delta(2\pi f-k2\pi f_0) \\
 +
&=\sum_{k=-\infty}^{\infty} a_k \delta(f-k f_0) \mbox{, by the scaling property of the delta}
 +
\end{align}
 +
</math> <br>
 +
 
 
----
 
----
 
===An impulse train===
 
===An impulse train===
<math>x(t)=\sum_{n=-\infty}^{\infty} \delta (t-nT)</math>
+
<math>x(t)=\sum_{n=-\infty}^{\infty} \delta (t-nT)</math><br>
 +
From the [https://www.projectrhea.org/rhea/index.php/CTFourierTransformPairsCollectedfromECE301withomega  table], we have the transform pair:<br>
 +
<math>\sum_{n=-\infty}^{\infty} \delta (t-nT) \leftrightarrow \frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta \left ( \omega - \frac{2\pi k}{T} \right )</math> <br>
 +
Therefore, using the definition that <math>\omega=2\pi f</math>:<br>
 +
<math>
 +
\begin{align}
 +
\sum_{n=-\infty}^{\infty} \delta (t-nT) \leftrightarrow &\frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta \left ( 2\pi f- \frac{2\pi k}{T} \right ) \\
 +
&=\frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left (f- \frac{k}{T} \right ) \mbox{, using the scaling property of the delta}
 +
\end{align}
 +
</math>
 
----
 
----
  

Revision as of 17:00, 8 September 2014


Homework 1 Solution, ECE438, Fall 2014, Prof. Boutin


A complex exponential

$ x(t)=e^{j2 \pi f_0 t} $

From table, $ e^{j\omega_0t} \leftrightarrow 2\pi \delta(\omega - \omega_0) $, therefore
$ \begin{align} e^{j2\pi f_0 t } \leftrightarrow &2\pi \delta(2\pi f - 2\pi f_0) \\ &=\delta(f - f_0) \end{align} $
Where the last line follows from the scaling property of the delta function.


A sine

$ \begin{align} x(t)=sin(2\pi f_0 t) =\frac{1}{2j} e^{j2\pi f_0 t} - \frac{1}{2j} e^{-j2\pi f_0 t} \end{align} $

$ \begin{align} \mathcal{F} \left \{ sin (2 \pi f_0 t) \right \} &= \mathcal{F} \left \{ \frac{1}{2j} e^{j2\pi f_0 t} - \frac{1}{2j} e^{-j2\pi f_0 t} \right \} \\ &= \frac{2 \pi}{2j} \delta (2\pi f - 2\pi f_0) - \frac{2 \pi}{2 j} \delta(2\pi f + 2 \pi f_0) \mbox{, using the transform of the complex exponential} \\ &= \frac{1}{2j}\delta(f-f_0) - \frac{1}{2j}\delta(f+f_0) \mbox{, by the scaling property of the delta} \end{align} $


A cosine

$ x(t)=cos(2\pi f_0 t) = \frac{1}{2}e^{j2\pi f_0t} + \frac{1}{2}e^{-j2\pi f_0 t} $

$ \begin{align} \mathcal{F} \left \{ cos (2 \pi f_0 t) \right \} &= \mathcal{F} \left \{ \frac{1}{2} e^{j2\pi f_0 t} + \frac{1}{2} e^{-j2\pi f_0 t} \right \} \\ &= \frac{2 \pi}{2} \delta (2\pi f - 2\pi f_0) + \frac{2 \pi}{2 } \delta(2\pi f + 2 \pi f_0) \mbox{, using the transform of the complex exponential} \\ &= \frac{1}{2}\delta(f-f_0) + \frac{1}{2}\delta(f+f_0) \mbox{, by the scaling property of the delta} \end{align} $


A periodic function

$ x(t)=\sum_{k=-\infty}^{\infty} a_k e^{jk2\pi f_0 t} $
From the table, we have the transform pair:
$ \sum_{k=-\infty}^{\infty} a_k e^{j\omega_0t} \leftrightarrow 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega-k\omega_0) $
Therefore, using the definition that $ \omega=2\pi f $:
$ \begin{align} \sum_{k=-\infty}^{\infty} a_k e^{j2\pi f_0t} \leftrightarrow &2\pi \sum_{k=-\infty}^{\infty} a_k \delta(2\pi f-k2\pi f_0) \\ &=\sum_{k=-\infty}^{\infty} a_k \delta(f-k f_0) \mbox{, by the scaling property of the delta} \end{align} $


An impulse train

$ x(t)=\sum_{n=-\infty}^{\infty} \delta (t-nT) $
From the table, we have the transform pair:
$ \sum_{n=-\infty}^{\infty} \delta (t-nT) \leftrightarrow \frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta \left ( \omega - \frac{2\pi k}{T} \right ) $
Therefore, using the definition that $ \omega=2\pi f $:
$ \begin{align} \sum_{n=-\infty}^{\infty} \delta (t-nT) \leftrightarrow &\frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta \left ( 2\pi f- \frac{2\pi k}{T} \right ) \\ &=\frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left (f- \frac{k}{T} \right ) \mbox{, using the scaling property of the delta} \end{align} $


Discussion

You may discuss the homework below.

  • write comment/question here
    • answer will go here

Back to ECE438, Fall 2014, Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang