(New page: Category:ECE438Fall2014Boutin Category:ECE438 Category:ECE Category:fourier transform Category:homework =Homework 1 Solution, ECE438, Fall 2014, [[user:mboutin|Pro...)
 
Line 6: Line 6:
  
 
=Homework 1 Solution, [[ECE438]], Fall 2014, [[user:mboutin|Prof. Boutin]]=
 
=Homework 1 Solution, [[ECE438]], Fall 2014, [[user:mboutin|Prof. Boutin]]=
 +
  
 
----
 
----
 
===A complex exponential===
 
===A complex exponential===
 
<math> x(t)=e^{j2 \pi f_0 t} </math>
 
<math> x(t)=e^{j2 \pi f_0 t} </math>
 +
 +
From [https://www.projectrhea.org/rhea/index.php/CTFourierTransformPairsCollectedfromECE301withomega  table], <math>e^{j\omega_0t} \leftrightarrow 2\pi \delta(\omega - \omega_0)</math>, therefore <br>
 +
<math>
 +
\begin{align}
 +
e^{j2\pi f_0 t }  \leftrightarrow &2\pi \delta(2\pi f - 2\pi f_0) \\
 +
&=\delta(f - f_0)
 +
\end{align}
 +
</math><br>
 +
Where the last line is by the [https://www.projectrhea.org/rhea/index.php/Homework_3_ECE438F09 scaling] property of the delta function.
 
----
 
----
*a sine  
+
===A sine===
 +
<math> x(t)=sin(t) </math>
 
----
 
----
*A cosine
+
===A cosine===
 +
<math>x(t)=cos(t)</math>
 
----
 
----
*A periodic function
+
===A periodic function===
 +
<math>x(t)=x(t-T)</math>
 
----
 
----
*An impulse train
+
===An impulse train===
 +
<math>x(t)=\sum_{n=-\infty}^{\infty} \delta (t-nT)</math>
 
----
 
----
  
 
Note: '''You will get zero credit if you simply write down the answers without any justification.'''
 
 
== Presentation Guidelines ==
 
* Write only on one side of the paper.
 
* Use a "clean" sheet of paper (e.g., not torn out of a spiral book).
 
* Staple the pages together.
 
* Include a cover page.
 
* Do not let your dog play with your homework.
 
----
 
 
== Discussion ==
 
== Discussion ==
 
You may discuss the homework below.
 
You may discuss the homework below.

Revision as of 14:32, 8 September 2014


Homework 1 Solution, ECE438, Fall 2014, Prof. Boutin


A complex exponential

$ x(t)=e^{j2 \pi f_0 t} $

From table, $ e^{j\omega_0t} \leftrightarrow 2\pi \delta(\omega - \omega_0) $, therefore
$ \begin{align} e^{j2\pi f_0 t } \leftrightarrow &2\pi \delta(2\pi f - 2\pi f_0) \\ &=\delta(f - f_0) \end{align} $
Where the last line is by the scaling property of the delta function.


A sine

$ x(t)=sin(t) $


A cosine

$ x(t)=cos(t) $


A periodic function

$ x(t)=x(t-T) $


An impulse train

$ x(t)=\sum_{n=-\infty}^{\infty} \delta (t-nT) $


Discussion

You may discuss the homework below.

  • write comment/question here
    • answer will go here

Back to ECE438, Fall 2014, Prof. Boutin

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood