Line 1: Line 1:
 
<br>  
 
<br>  
<center><font size="4"></font>
+
<center><font size="4"></font>  
 
<font size="4">ROC curve and Neyman Pearsom Criterion </font>  
 
<font size="4">ROC curve and Neyman Pearsom Criterion </font>  
  
Line 11: Line 11:
 
----
 
----
  
==贝叶斯定理 (Bayes' theorem)==
+
== 贝叶斯定理 (Bayes' theorem) ==
贝叶斯定理由英国数学家托马斯·贝叶斯(Thomas Bayes)在1763提出,因此得名贝叶斯定理。贝叶斯定理也称贝叶斯推理,是关于随机事件的条件概率的一则定理。
+
  
对于两个随机事件A和B,贝叶斯定理有如下表达:
+
贝叶斯定理由英国数学家托马斯·贝叶斯(Thomas Bayes)在1763提出,因此得名贝叶斯定理。贝叶斯定理也称贝叶斯推理,是关于随机事件的条件概率的一则定理。
  
 +
对于两个随机事件A和B,贝叶斯定理有如下表达:
 +
 +
<center?
 +
<math>P(A|B) = \frac{P(B|A)P(A)}{P(B)}</math>
 +
</center>
  
<math>P(A|B) = \frac{p_1(x)}{p_2(x)}</math>
 
 
*If you are making a text slecture  
 
*If you are making a text slecture  
 
**Type text using wikitext markup languages  
 
**Type text using wikitext markup languages  
Line 31: Line 34:
 
----
 
----
  
== [[Slecture title of slecture review|Questions and comments]] ==
+
== [[Slecture title of slecture review|Questions and comments]] ==
  
 
If you have any questions, comments, etc. please post them on [[Slecture title of slecture review|this page]].  
 
If you have any questions, comments, etc. please post them on [[Slecture title of slecture review|this page]].  

Revision as of 11:15, 29 April 2014


ROC curve and Neyman Pearsom Criterion

A slecture by ECE student Weibao Wang

Partly based on the ECE662 Spring 2014 lecture material of Prof. Mireille Boutin.



贝叶斯定理 (Bayes' theorem)

贝叶斯定理由英国数学家托马斯·贝叶斯(Thomas Bayes)在1763提出,因此得名贝叶斯定理。贝叶斯定理也称贝叶斯推理,是关于随机事件的条件概率的一则定理。

对于两个随机事件A和B,贝叶斯定理有如下表达:

<center? $ P(A|B) = \frac{P(B|A)P(A)}{P(B)} $ </center>

  • If you are making a text slecture
    • Type text using wikitext markup languages
    • Type all equations using latex code between <math> </math> tags.
    • You may include links to other Project Rhea pages.





Questions and comments

If you have any questions, comments, etc. please post them on this page.


Back to ECE662, Spring 2014

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett