(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 +
[[Category:Problem_solving]]
 +
[[Category:ECE438]]
 +
[[Category:digital signal processing]]
 
[[Category:2010 Fall ECE 438 Boutin]]
 
[[Category:2010 Fall ECE 438 Boutin]]
 
<span style="color:green"> Under construction </span> -[[User:han83|Jaemin]]
 
  
 
----
 
----
Line 8: Line 9:
 
Q1. Find the impulse response of the following LTI systems and draw their block diagram.
 
Q1. Find the impulse response of the following LTI systems and draw their block diagram.
  
(assume that the impulse response is causal and zero when <math>n<0</math>.
+
(assume that the impulse response is causal and zero when <math>n<0</math>)
  
 
<math>{\color{White}ab}\text{a)}{\color{White}abc}y[n] = 0.6 y[n-1] + 0.4 x[n]</math>
 
<math>{\color{White}ab}\text{a)}{\color{White}abc}y[n] = 0.6 y[n-1] + 0.4 x[n]</math>
Line 18: Line 19:
 
Q2. Suppose that the LTI filter <math>h_1</math> satifies the following difference equation between input <math>x[n]</math> and output <math>y[n]</math>.
 
Q2. Suppose that the LTI filter <math>h_1</math> satifies the following difference equation between input <math>x[n]</math> and output <math>y[n]</math>.
  
<math> {\color{White}ab} y[n] = h_1[n]\;\ast\;x[n] = \frac{1}{4} y[n-1] + x[n] </math>
+
<math> {\color{White}ab} y[n] = h_1[n]\;\ast\;x[n] = \frac{1}{4} y[n-1] + x[n] </math>  
  
Then, find the inverse LTI filter (<math>h_2</math>) of <math>h_1</math>, which satisfies the following relationship for any discrete-time signal <math>x[n]</math>,
+
(<math>\ast</math> implies the convolution)
 +
 
 +
Then, find the inverse LTI filter <math>h_2</math> of <math>h_1</math>, which satisfies the following relationship for any discrete-time signal <math>x[n]</math>,
 +
 
 +
(assume that the impulse responses are causal and zero when <math>n<0</math>)
  
 
<math> {\color{White}ab} x[n] = h_2[n]\;\ast\;h_1[n]\;\ast\;x[n] </math>
 
<math> {\color{White}ab} x[n] = h_2[n]\;\ast\;h_1[n]\;\ast\;x[n] </math>
Line 27: Line 32:
 
----
 
----
 
<math>\text{Q3.}</math>
 
<math>\text{Q3.}</math>
 +
 +
The following figure shows the flow diagram that results for an N=8 FFT algorithm. The bolded line indicates a path from input sample x[7] to DFT sample X[2].
 +
 +
[[Image:Week8_Q3_FFT.jpg]]
 +
 +
 +
a) What is the gain of the path?
 +
 +
b) How many paths exist beginning at x[7] and ending up at X[2]? Does the result apply to a general condition? i.e. How many paths are there between every input sample and output sample?
 +
 +
c) Consider DFT sample X[2]. Following paths displayed in the flow diagram. Prove that every input sample contributes the proper amount to the output DFT sample.
 +
 +
i.e. <math>X[2]=\sum_{n=0}^{N-1} x[n]e^{-j(2\pi /N)2n}</math>
 +
 
* [[ECE438_Week8_Quiz_Q3sol|Solution]].
 
* [[ECE438_Week8_Quiz_Q3sol|Solution]].
 
----
 
----
 
<math>\text{Q4.}</math>
 
<math>\text{Q4.}</math>
 +
 +
Consider a system described by the following equation
 +
 +
y[n] = x[n] + x[n-1] + y[n-1]
 +
 +
a. Find the response y[n] to the input
 +
 +
<math>
 +
x[n] = \begin{cases}
 +
(-1)^n, & 0 \le n \le 4 \\
 +
0, & \mbox{else}
 +
\end{cases}
 +
</math>
 +
 +
b. State whether or not this system is (i) linear, (ii) time-invariant, (iii) memoryless, (iv) causal, (v) bounded-input-bounded output stable.
 +
 +
c. Find an expression for the frequency response <math>H(\omega)</math> for this system.
 +
 +
d. Find the output y[n] when the input x[n] = sin(n<math>\pi</math>/4) using the answer to part c.
 +
 +
e. Find an expression for impulse response h[n].
 +
 
* [[ECE438_Week8_Quiz_Q4sol|Solution]].
 
* [[ECE438_Week8_Quiz_Q4sol|Solution]].
 
----
 
----
<math>\text{Q5.}</math>
+
 
* [[ECE438_Week8_Quiz_Q5sol|Solution]].
+
----
+
<math>\text{Q6.}</math>
+
* [[ECE438_Week8_Quiz_Q6sol|Solution]].
+
----
+
 
Back to [[ECE438_Lab_Fall_2010|ECE 438 Fall 2010 Lab Wiki Page]]
 
Back to [[ECE438_Lab_Fall_2010|ECE 438 Fall 2010 Lab Wiki Page]]
  
 
Back to [[2010_Fall_ECE_438_Boutin|ECE 438 Fall 2010]]
 
Back to [[2010_Fall_ECE_438_Boutin|ECE 438 Fall 2010]]

Latest revision as of 09:42, 11 November 2011



Quiz Questions Pool for Week 8


Q1. Find the impulse response of the following LTI systems and draw their block diagram.

(assume that the impulse response is causal and zero when $ n<0 $)

$ {\color{White}ab}\text{a)}{\color{White}abc}y[n] = 0.6 y[n-1] + 0.4 x[n] $

$ {\color{White}ab}\text{b)}{\color{White}abc}y[n] = y[n-1] + 0.25(x[n] - x[n-3]) $


Q2. Suppose that the LTI filter $ h_1 $ satifies the following difference equation between input $ x[n] $ and output $ y[n] $.

$ {\color{White}ab} y[n] = h_1[n]\;\ast\;x[n] = \frac{1}{4} y[n-1] + x[n] $

($ \ast $ implies the convolution)

Then, find the inverse LTI filter $ h_2 $ of $ h_1 $, which satisfies the following relationship for any discrete-time signal $ x[n] $,

(assume that the impulse responses are causal and zero when $ n<0 $)

$ {\color{White}ab} x[n] = h_2[n]\;\ast\;h_1[n]\;\ast\;x[n] $


$ \text{Q3.} $

The following figure shows the flow diagram that results for an N=8 FFT algorithm. The bolded line indicates a path from input sample x[7] to DFT sample X[2].

Week8 Q3 FFT.jpg


a) What is the gain of the path?

b) How many paths exist beginning at x[7] and ending up at X[2]? Does the result apply to a general condition? i.e. How many paths are there between every input sample and output sample?

c) Consider DFT sample X[2]. Following paths displayed in the flow diagram. Prove that every input sample contributes the proper amount to the output DFT sample.

i.e. $ X[2]=\sum_{n=0}^{N-1} x[n]e^{-j(2\pi /N)2n} $


$ \text{Q4.} $

Consider a system described by the following equation

y[n] = x[n] + x[n-1] + y[n-1]

a. Find the response y[n] to the input

$ x[n] = \begin{cases} (-1)^n, & 0 \le n \le 4 \\ 0, & \mbox{else} \end{cases} $

b. State whether or not this system is (i) linear, (ii) time-invariant, (iii) memoryless, (iv) causal, (v) bounded-input-bounded output stable.

c. Find an expression for the frequency response $ H(\omega) $ for this system.

d. Find the output y[n] when the input x[n] = sin(n$ \pi $/4) using the answer to part c.

e. Find an expression for impulse response h[n].


Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood