(New page: ==Norm and Agrument of a Complex Number== For any complex number :<math>z = x + iy\,</math> The '''norm''' (absolute value) of <math>z\,</math> is given by :<math> |z| = \sqrt{x^2+y^2}...)
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Norm and Agrument of a Complex Number==
+
[[Category:Complex Number Magnitude]]
 +
[[Category:ECE301]]
 +
==Norm and Agrument of a Complex Number ([[Homework_1_ECE301Fall2008mboutin|HW1]], [[ECE301]], [[Main_Page_ECE301Fall2008mboutin|Fall 2008]])==
  
 
For any complex number
 
For any complex number
Line 5: Line 7:
 
:<math>z = x + iy\,</math>
 
:<math>z = x + iy\,</math>
  
The '''norm''' (absolute value) of <math>z\,</math> is given by
+
The '''norm''' (absolute value) of <math>z\,</math> is given by (<span style="color:red"> see important comment on [[HW1.3_David_Record_-_Magnitude_of_a_Complex_Number_ECE301Fall2008mboutin|this page]] regarding using the term "absolute value" only for real numbers</span>)
  
 
:<math> |z| = \sqrt{x^2+y^2}</math>
 
:<math> |z| = \sqrt{x^2+y^2}</math>
 +
  
 
The '''argument''' of <math>z\,</math> is given by
 
The '''argument''' of <math>z\,</math> is given by
Line 22: Line 25:
  
 
:<math> z = x + iy = r(\cos \phi + i \sin \phi ) = r e^i\phi\,</math>
 
:<math> z = x + iy = r(\cos \phi + i \sin \phi ) = r e^i\phi\,</math>
 +
----
 +
[[Main_Page_ECE301Fall2008mboutin|Back to ECE301 Fall 2008 Prof. Boutin]]
 +
 +
[[ECE301|Back to ECE301]]
 +
 +
[[More_on_complex_magnitude|Back to Complex Magnitude page]]
 +
 +
Visit the [[ComplexNumberFormulas|"Complex Number Identities and Formulas" page]]

Latest revision as of 04:36, 23 September 2011

Norm and Agrument of a Complex Number (HW1, ECE301, Fall 2008)

For any complex number

$ z = x + iy\, $

The norm (absolute value) of $ z\, $ is given by ( see important comment on this page regarding using the term "absolute value" only for real numbers)

$ |z| = \sqrt{x^2+y^2} $


The argument of $ z\, $ is given by

$ \phi = arctan (y/x)\, $


Conversion from Cartesian to Polar Form

$ x = r\cos \phi\, $
$ y = \sin \phi\, $
$ z = x + iy = r(\cos \phi + i \sin \phi ) = r e^i\phi\, $

Back to ECE301 Fall 2008 Prof. Boutin

Back to ECE301

Back to Complex Magnitude page

Visit the "Complex Number Identities and Formulas" page

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva