Line 41: Line 41:
 
|<math>\mathcal{F }\left \{ rect(t) \right \}, \mathcal{X}(\omega)</math>
 
|<math>\mathcal{F }\left \{ rect(t) \right \}, \mathcal{X}(\omega)</math>
 
|\mathcal{F }\left \{ rect(t) \right \}, \mathcal{X}(\omega)
 
|\mathcal{F }\left \{ rect(t) \right \}, \mathcal{X}(\omega)
|-
+
 
|''Long Equations''
+
|<math>\begin{align}f(x) &= \int\limits_{0}^{2\pi} sin^2(\theta) \ d\theta  \\  &= \int\limits_{0}^{2\pi} \big(1-cos^2(\theta) \big)\ d\theta \\
+
&= \int\limits_{0}^{2\pi} \bigg( 1-\Big(\frac{1}{2} +\frac{1}{2} cos(2\theta)\Big) \bigg)\ d\theta \\
+
&= \int\limits_{0}^{2\pi} \frac{1}{2}\ d\theta -\frac{1}{2} \int\limits_{0}^{2\pi} cos(2\theta) \ d\theta \\
+
&= \pi
+
\end{align}
+
</math>
+
|\begin{align}
+
f(x) &= \int\limits_{0}^{2\pi} sin^2(\theta) \ d\theta \\  &= \int\limits_{0}^{2\pi} \big(1-cos^2(\theta) \big)\ d\theta \\
+
&= \int\limits_{0}^{2\pi} \bigg( 1-\Big(\frac{1}{2} +\frac{1}{2} cos(2\theta)\Big) \bigg)\ d\theta \\
+
&= \int\limits_{0}^{2\pi} \frac{1}{2}\ d\theta -\frac{1}{2} \int\limits_{0}^{2\pi} cos(2\theta) \ d\theta \\
+
&= \pi
+
\end{align}
+
 
|}
 
|}

Revision as of 14:20, 2 September 2011

How to Enter Math in Rhea

This page shows many of the functions and symbols that you are likely to need while working on the practice problems. *hint hint


Basics of Rhea/Wiki Math

Math in Rhea is written using the Latex commands. To begin, you need use the math tags like: <math> formulas </math>.

Resources

You should know that there is a host of resources already to help you along. One great page on Rhea is How to type Math Equations. Another resource is Wikipedia's page on Functions, Symbols, and Special Characters.


Commands helpful while doing the practice problems
Description What it looks like What you type
Summations $ \sum_{n=-\infty}^\infty x[n]e^{-j2\pi f} $ \sum_{n=-\infty}^\infty x[n]e^{-j2\pi f}
Summations with Delta $ \sum_{k=0}^\infty x[n]\delta [n-k] $ \sum_{k=0}^\infty x[n]\delta [n-k]
Fractions $ y=x^2/2 +\frac{x}{\phi} $ y=x^2/2 +\frac{x}{\phi}
Integrals $ \int\limits_{\alpha}^{\beta}e^\tau\ d\tau $ \int\limits_{\alpha}^{\beta}e^\tau\ d\tau
Braces and Script Characters $ \mathcal{F }\left \{ rect(t) \right \}, \mathcal{X}(\omega) $ \mathcal{F }\left \{ rect(t) \right \}, \mathcal{X}(\omega)

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin