(Definition of Non-Linear System)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
== Part A: Understanding System's Properties ==
+
== [[Homework_3_ECE301Fall2008mboutin|HW3]], Part A: Understanding System's Properties ==
 +
 
  
 
=== Definition of a Linear System ===
 
=== Definition of a Linear System ===
Line 16: Line 17:
  
 
The response to <math>\alpha x_1(t) + \beta x_2(t) \neq \alpha y_1(t) + \beta y_2(t)\!</math>
 
The response to <math>\alpha x_1(t) + \beta x_2(t) \neq \alpha y_1(t) + \beta y_2(t)\!</math>
 +
----
 +
[[Homework_3_ECE301Fall2008mboutin|Back to HW3]]
 +
 +
[[Main_Page_ECE301Fall2008mboutin|Back to ECE301 Fall 2008]]

Latest revision as of 11:03, 30 January 2011

HW3, Part A: Understanding System's Properties

Definition of a Linear System

According to Mimi, a system is called "Linear" if for any constants $ \alpha, \beta \! $ (part of the Complex Number domain) and for any inputs $ x_1(t), x_2(t)\! $ (or $ x_1[n], x_2[n]\! $) yielding output $ y_1(t), y_2(t)\! $ respectively,


Then the response to $ \alpha x_1(t) + \beta x_2(t)\! $ is $ \alpha y_1(t) + \beta y_2(t)\! $

Definition of Non-Linear System

According to the previous definition of a "Linear" system, a system is called "Non-Linear" if for any constants $ \alpha, \beta \! $ (part of the Complex Number domain) and for any inputs $ x_1(t), x_2(t)\! $ (or $ x_1[n], x_2[n]\! $) yielding output $ y_1(t), y_2(t)\! $ respectively,


The response to $ \alpha x_1(t) + \beta x_2(t) \neq \alpha y_1(t) + \beta y_2(t)\! $


Back to HW3

Back to ECE301 Fall 2008

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin