Line 21: | Line 21: | ||
Refer to [[Xujun Huang: Properties of ROC_ECE301Fall2008mboutin]] | Refer to [[Xujun Huang: Properties of ROC_ECE301Fall2008mboutin]] | ||
+ | |||
+ | ==Computing the Inverse Z.T.== | ||
+ | |||
+ | <math>X(z) = \frac{1}{1-2z^{-1}] , |z| < 2</math> | ||
+ | |||
+ | <b>Warning <math>|2z^{-1}| = \frac{2}{z} > 1</math>!!</b> |
Revision as of 14:15, 30 November 2008
Contents
Z Transform
Discrete analog of Laplace Transform
$ X(z) = \sum_{n = -\infty}^\infty x[n]z^{-n} $
Where z is a complex variable.
Relationship between Z-Transform and F.T.
$ X(\omega) = X(e^{j\omega}) $
$ X(z)=X(re^{j\omega}) $ Then $ X(z) = F(x[n]r^{-n}) $ $ X(z) = \sum_{n = -\infty}^\infty x[n]z^{-n} = \sum_{n = -\infty}^\infty x[n](re^{j\omega})^{-n} = \sum_{n = -\infty}^\infty x[n]r^{-n}e^{-j\omega n} $ Where $ \sum_{n = -\infty}^\infty x[n]r^{-n}e^{-j\omega n} $ is the F.T!
Properties of the ROC
Refer to Xujun Huang: Properties of ROC_ECE301Fall2008mboutin
Computing the Inverse Z.T.
$ X(z) = \frac{1}{1-2z^{-1}] , |z| < 2 $
Warning $ |2z^{-1}| = \frac{2}{z} > 1 $!!