(DT Fourier Transform Pairs)
(CT Fourier Transform Properties)
Line 64: Line 64:
 
*[[CT_Fourier_Int/Diff_ECE301Fall2008mboutin]]{{:CT_Fourier_Int/Diff}}
 
*[[CT_Fourier_Int/Diff_ECE301Fall2008mboutin]]{{:CT_Fourier_Int/Diff}}
 
*[[CT Time and Frequency Scaling_ECE301Fall2008mboutin]] : <math>x(at) \leftarrow \rightarrow \frac{1}{|a|}X(\frac{j\omega }{a})\,</math>
 
*[[CT Time and Frequency Scaling_ECE301Fall2008mboutin]] : <math>x(at) \leftarrow \rightarrow \frac{1}{|a|}X(\frac{j\omega }{a})\,</math>
*[[CT Differentiation in Frequency_ECE301Fall2008mboutin]]
+
*[[CT Differentiation in Frequency_ECE301Fall2008mboutin]]{{:CT Differentiation in Frequency}}
 
*[[CT Convolution_ECE301Fall2008mboutin]] : <math> F(x_1(t)*x_2(t)) = X_1(\omega)X_2(\omega) \!</math>
 
*[[CT Convolution_ECE301Fall2008mboutin]] : <math> F(x_1(t)*x_2(t)) = X_1(\omega)X_2(\omega) \!</math>
 
*[[CT Frequency Shifting_ECE301Fall2008mboutin]] : <math> F(e^{jw0t}x(t)) = X(j(w - w0)) \!</math>
 
*[[CT Frequency Shifting_ECE301Fall2008mboutin]] : <math> F(e^{jw0t}x(t)) = X(j(w - w0)) \!</math>

Revision as of 16:15, 15 October 2008


Please follow the following model to add your formulas:

Create a page with a descriptive name and type your formula on this page using latex. Then write
{{:name of the page with your formula}}

in the place where you want your formula to appear in this table. (Look at the syntax of the geometric series below for an example.) This will allow other people to refer to your formula later on (by refering to the corresponding page) while still being able to view all formulas on this page.

General Purpose Formulas

Series

Euler's Formula

Discrete-time domain

Useful Formulas

DT Fourier Transform Pairs

DT Fourier Transform Properties

Parsevel Relationship for DT signals

Continuous-time domain

Useful Formulas

CT Fourier Transform Pairs

CT Fourier Transform Properties

CT Multiplication Property

Parsevel Relationship for CT signals

  • put a property here following syntax described at top of page.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett