Complex Modulus (HW1, ECE301, Fall 2008)

Complex Modulus, also known as the "Norm" of a complex number, is represented as $ |z| $.

$ |x + iy| = \sqrt{x^2 + y^2} $


In exponential form for $ |z| $

$ |re^{i\phi}| = r $

(This format is used when dealing with Phasors)

Basics

  • $ \frac{|Ae^{i\phi_{1}}|}{|Be^{i\phi_{2}}|} = \frac{A}{B}\frac{|e^{i\phi_{1}}|}{|e^{i\phi_{2}}|} = \frac{A}{B} $


  • $ |\frac{Ae^{i\phi_{1}}}{Be^{i\phi_{2}}}| = \frac{A}{B}|e^{i(\phi_{1}-\phi_{2})}| = \frac{A}{B} $


  • $ |\frac{Ae^{i\phi_{1}}}{Be^{i\phi_{2}}}| = \frac{|Ae^{i\phi_{1}}|}{|Be^{i\phi_{2}}|} $


  • $ |Ae^{i\phi_{1}}||Be^{i\phi_{2}}| = {A}{B}|e^{i\phi_{1}}||e^{i\phi_{2}}| = {A}{B} $


  • $ |(Ae^{i\phi_{1}})(Be^{i\phi_{2}})| = {A}{B}|e^{i\phi_{1}+i\phi_{2}}| = {A}{B} $


  • $ |Ae^{i\phi_{1}}||Be^{i\phi_{2}}| = |(Ae^{i\phi_{1}})(Be^{i\phi_{2}})| $


  • $ |z^n|=|z|^n $


  • $ |z|^2 $ of $ |z| $ is known as the Absolute Square.


  • $ z\overline z=|z|^2 $
     Where $ z $ is a complex number and $ \overline z $ is the complex conjugate.
     
     $ z = x + iy $
     
     $ \overline z=x-iy $

Back to ECE301 Fall 2008 Prof. Boutin

Back to ECE301

Back to Complex Magnitude page

Visit the "Complex Number Identities and Formulas" page

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics