Discrete Fourier Transform

Definition: let x[n] be a discrete-time signal with Period N. Then the Discrete Fourier Transform X[k] of x[n] is the discrete-time signal defined by

$ X [k] = \sum_{k=0}^{N-1} x[n].e^{-J.2pi.kn/N}. $

Conversely, the Inverse Discrete Fourier transform is

$ x [n] = (1/N) \sum_{k=0}^{N-1} X[k].e^{J.2pi.kn/N} $


Some pages discussing or using Discrete Fourier Transform

Click here to view all the pages in the discrete Fourier transform category.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett