Revision as of 12:59, 9 September 2008 by Park1 (Talk)

A time-invariant system

For any input signal x(t), a system yelids y(t). Now, suppose input signal shifted t0, x(t-t0). Then output signal also shifted t0, y(t-t0). Then we can say a system is time-invariant.

Example of a tume-invariant system

x(t) = $ e^t $
Output signal y(t) can be $ 10e^t $ by system
Prove.
1. $ e^t $ is changed to $ e^{(t-t0)} $ by time delay.

  $ e^{(t-t0)} -> 10e^{(t-t0)} $ by system.

2. $ e^t -> 10e^t $ by system.

  $ 10e^t -> 10e^{(t-t0)} $

The output signals are same. Then we can say that the system is time-invariant.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett