Signal Energy
$ E = \int_{t_1}^{t_2}\!|x(t)|^2dt $
Signal Energy Example
$ E = \int_{0}^{4\pi}\!|sin(t)|^2dt $
Power
$ P={1\over(t_2-t_1)}\int_{t_1}^{t_2}\!|x(t)|^2dt $
$ E = \int_{t_1}^{t_2}\!|x(t)|^2dt $
$ E = \int_{0}^{4\pi}\!|sin(t)|^2dt $
$ P={1\over(t_2-t_1)}\int_{t_1}^{t_2}\!|x(t)|^2dt $