Revision as of 03:52, 5 September 2008 by Ccadwall (Talk)

Euler's Forumla

$ e^{ix} = \cos x + i * \sin x $

Proof

Using Taylor Series:

$ e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots $

$ \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots $

$ \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots $


$ e^{ix} = 1 + ix + /frac{{ix}^2}{2!} + /frac{{ix}^3}{3!} + /frac{{ix}^4}{4!} + /frac{{ix}^5}{5!} + \cdots $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal