Revision as of 17:28, 27 November 2020 by Sun955 (Talk | contribs)

What is Feynman's Technique?

Feynman's Technique of integration utilizes parametrization and a mix of other different mathematical properties in order to integrate an integral that is can't be integrated through normal processes like u-substitution or integration by parts. It primarily focuses on setting a function equal to an integral, and then differentiating the function to get an integral that is easier to work with. A simple example would be an integral such as:

$ \int_{0}^{\infty}(e^{-x^2}*cos(2x)) dx $

As we can see, there isn't any particular place that we can use u-substitution or integration by parts to produce a solution easily, but Feynman shows us how we can parameterize the variables for the cosine factor of the integrand to extract an x, making the left portion of the integrand $ x*e^{-x^2} $, which is much easier to deal with than just $ e^{-x^2} $

Back to Feynman Integrals

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva