Revision as of 10:45, 25 February 2019 by Wan82 (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


ECE Ph.D. Qualifying Exam

Automatic Control (AC)

Question 3: Optimization

August 2016 Problem 4


Solution

We form the lagrangian:
$ l(x,\lambda)=x_1x_2+\lambda_1(x_1+x_2+x_3-1)+\lambda_2(x_1+x_2-x_3) $
$ \begin{cases} \nabla_xl=\begin{bmatrix} x_2+\lambda_1+\lambda_2 \\ x_1+\lambda_1+\lambda_2 \\ \lambda_1+\lambda_2\end{bmatrix}=\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ x_1+x_2+x_3-1=0 \\ x_1+x_2-x_3=0 \end{cases} $
No valid solution for lagrangian condition
Such that the problem can not be optimized


Similar Problem

2015 QE AC3 Prob1
2015 QE AC3 Prob3
2014 QE AC3 Prob2


Back to QE AC question 3, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett