Revision as of 15:51, 19 February 2019 by Wan82 (Talk | contribs)


ECE Ph.D. Qualifying Exam

Communication Signal (CS)

Question 5: Image Processing

August 2017 Problem 1


Solution

a)
$ ay(m,n)=ax(m,n)+a\lambda(x(m,n)-\dfrac{1}{9}\sum_{k=-1}^{1} \sum_{l=-1}^{1} x(m-k,n-l)) $ linear

b)
$ y(m,n)=x(m,n)+\lambda(x(m,n)-\dfrac{1}{9}\sum_{k=-1}^{1} \sum_{l=-1}^{1} x(m-k,n-l))=1.5x(m,n)-\dfrac{1}{18}\sum_{k=-1}^{1} \sum_{l=-1}^{1} x(m-k,n-l) $
$ h(m,n)=1.5\delta(m,n)-\dfrac{1}{18}(\delta(m+1)+\delta(m)+\delta(m-1))(\delta(n-1)+\delta(n)+\delta(n+1))) $
Wan82_CS5-1.PNG

c)
Not a separable system.

d)
$ H(e^{j\mu},e^{jv})=\dfrac{3}{2}-\dfrac{1}{18}\sum_{m=-1}^{1} e^{-j\mu}\sum_{n=-1}^{1} e^{-jv} =\dfrac{3}{2}-\dfrac{1}{18}(1+2cos\mu)(1+2cosv) $

e)
This is a sharpen filter. The image will become more sharpen as $ \lambda $ increases.


Back to QE CS question 5, August 2017

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang