Revision as of 11:58, 18 February 2019 by Wan82 (Talk | contribs)


ECE Ph.D. Qualifying Exam

Automatic Control (AC)

Question 3: Optimization

August 2016 Problem 1


Solution

The problem equal to:
Minimize $ 2x_1+x_2 $
Subject to \begin{align*} 2x - 5y &= 8 \\ 3x + 9y &= -12 \end{align*}

Solution 2

Let $ Z=X+Y $,

$ P_Z(k)=P_Z(z=k)=P_Z(x+y=k)\\ =\sum_{i=0}^{k}P(x=i)(y=k-i)=\sum_{i=0}^{k}\frac{\lambda_1^i e^{\lambda_1}}{i!}\cdot\frac{\lambda_2^{k-i}e^{-\lambda_2}}{(k-i)!} =e^{-\lambda_1-\lambda_2}\cdot \frac{(\lambda_1+\lambda_2)^k}{k!} $

Using $ (a+b)^k=\sum_{i=0}^{k}a^ib^{(k-i)}\cdot \frac{k!}{i!(k-i)!} $

Therefore,

$ P_{X|Z}(x=k|z=n)=\frac{P(x=k,z=n)}{P(z=n)}=\frac{P(x=k,x+y=n)}{P(z=n)}=\frac{P(x=k,y=n-k)}{P(z=n)}\\ =\frac{\lambda_1^k e^{-\lambda_1}}{k!}\frac{\lambda_2^{n-k} e^{-\lambda_2}}{(n-k)!}\frac{n!}{e^{-\lambda_1}e^{-\lambda_2}(\lambda_1+\lambda_2)^n} = \frac{\lambda_1^k \lambda_2^{n-k} }{(\lambda_1+\lambda_2)^n}\frac{n!}{k!(n-k)!} $

Solution 3

We will view this problem through the lens of Bayes' Theorem. As such, we can write the conditional distribution as

$ P(X = x | X+Y = n) = \frac{P(X = x, X+Y = n)}{P(X+Y = n)} = \frac{P(X = x, Y = n - X)}{\sum^n_{k = 0}P(X = k, Y = n - k)} $.

Since $ X $ and $ Y $ are independent, we can further write

$ P(X = x | X+Y = n) = \frac{P(X = x)P(Y = n - X)}{\sum^n_{k = 0}(P(X=k)P(Y = n-k))} $.

Now let us separate the above expression into numerator and denominator. Recalling that $ X $ and $ Y $ are independent Poisson r.v.s, the numerator is given by

$ P(X = x)P(Y = n - X) = \frac{e^{-\lambda_1}\lambda_1^x}{x!}\cdot\frac{e^{-\lambda_2}\lambda_2^{n-x}}{(n-x)!} $.

Multiplying the above by $ \frac{n!}{n!} $ gives

$ P(X = x)P(Y = n - X) = \frac{e^{-\lambda_1 + \lambda_2}}{n!}{n\choose x}\lambda_1^x\lambda_2^{n-x} $.

Now let us examine the denominator. Again, we make use of the fact that $ X $ and $ Y $ are independent Poisson r.v.s to write

$ \sum^n_{k = 0}(P(X=k)P(Y = n-k)) = \sum^n_{k = 0}\left(\frac{e^{-\lambda_1}\lambda_1^k}{k!}\frac{e^{-\lambda_2}\lambda_2^{n-k}}{(n-k)!}\right) $.

Again, we multiply by $ \frac{n!}{n!} $ to obtain

$ \sum^n_{k = 0}(P(X=k)P(Y = n-k)) = \frac{e^{-\lambda_1 + \lambda_2}}{n!}\sum^n_{k = 0}{n\choose k}\lambda_1^k\lambda_2^{n-k} $.

We can make use of the binomial formula to simplify this expression. Recall that the binomial formula is given by

$ (a+b)^n = \sum^n_{k = 0}{n\choose k}a^k b^{n - k} $.

We use this to write

$ . \sum^n_{k = 0}(P(X=k)P(Y = n-k)) = \frac{e^{-\lambda_1 + \lambda_2}}{n!}\cdot(\lambda_1 + \lambda_2)^n $

Putting this all together, we can finally write

$ P(X = x | X+Y = n) = \frac{\frac{e^{-\lambda_1 + \lambda_2}}{n!}{n\choose x}\lambda_1^x\lambda_2^{n-x}}{\frac{e^{-\lambda_1 + \lambda_2}}{n!}\cdot(\lambda_1 + \lambda_2)^n} = {n\choose x}\frac{\lambda_1^x\lambda_2^{n-x}}{(\lambda_1 + \lambda_2)^n} $

and we are done.

Similar Problem

If $ X $ and $ Y $ are independent binomial random variables with success probabilities $ p $ and $ q $ respectively, find the probability mass function of $ X $ when $ X + Y = k $. In addition, investigate what happens to this p.m.f. when $ p = q $.


Back to QE CS question 1, August 2015

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang