Euler's Equation And De Moivre's Formula
If $ z = z + iy<math>, then <math>e^{z}<math> is defined to be the complex number <math> \begin{align} e^{z} &= e^{x}(\cos(y) + i\sin(y)) \end{align} $
If $ z = z + iy<math>, then <math>e^{z}<math> is defined to be the complex number <math> \begin{align} e^{z} &= e^{x}(\cos(y) + i\sin(y)) \end{align} $