Revision as of 15:54, 4 September 2008 by Ezarowny (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Equations

Energy of a Signal: $ E = {1\over(t2-t1)}\int_{t_1}^{t_2} \! |f(t)|^2 dt $


Power of a Signal: $ P = \int_{t_1}^{t_2} \! |f(t)|^2\ dt $


Energy

$ E = {1\over(t2-t1)}\int_{t_1}^{t_2} \! |sin(t)|^2 dt $


$ E = {1\over4\pi} * [t - {1\over2}sin(2t)]_{t=0}^{t=2\pi} $


$ E = {1\over{4\pi}} * [ 2\pi - {1\over2}\sin(4\pi) - ( 0 - {1\over2}\sin(0) ) ] $


$ E = {1\over{4\pi}} * [2\pi] $


$ E = {1\over2} $


Power

$ P = \int_{t_1}^{t_2} \! |sin(t)|^2\ dt $


$ P = \int_0^{2\pi} \! |{(1-\cos(2t))\over 2}| dt $


$ P = {1\over 2}\int_0^{2\pi} \! |1-\cos(2t)| dt $


$ P = {1\over 2}t - {1\over 4}\sin(2t) )\mid_0^{2\pi} $


$ P = {1\over 2}(2\pi) - {1\over 4}\sin(2*2\pi) - [{1\over 2}(0) - {1\over 4}\sin(2*0)] $


$ P = \pi $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn