Revision as of 15:23, 14 November 2018 by Kim2311 (Talk | contribs)

CTFT of periodic signals and some properties with proofs

- Fourier series of periodic signals
- Properties of the Continuous-time Fourier Transform
Function CTFT Proof
$ sin(\omega_0t) $ $ \frac{\pi}{j}(\delta(\omega - \omega_0) - \delta(\omega+\omega_0)) $
$ cos(\omega_0t) $ $ \pi(\delta(\omega - \omega_0) + \delta(\omega+\omega_0)) $
$ e^{j\omega_0t} $ $ 2\pi\delta(\omega - \omega_0) $
$ \sum_{k=-\infty}^{\infty}u(t+5k) - u(t-1+5k) $
name Property
Linearity
Time Shifting
Frequency Shifting
Conjugation
Scaling
Multiplication
Convolution
Differentiation
Parseval's Relation

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch