Revision as of 17:13, 4 August 2018 by Mhayashi (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


Answers and Discussions for

ECE Ph.D. Qualifying Exam PE-1 August 2014



Problem 2, part a

The $ b $-phase stator winding function is given.

$ \begin{equation} w_{bs}(\phi_{sm}) = 100\sin(2\phi_{sm}) - 10\sin(6\phi_{sm}) \end{equation} $

A symmetric 3-phase machine has a set of winding functions that may be expressed in the following continuous form using a third-harmonic term. The $ a $-phase will precede the $ b $-phase by $ \frac{2\pi}{3} \, \text{rad} $, and likewise the $ b $-phase will precede the $ c $-phase by the same phase shift.

$ \begin{equation} \begin{bmatrix} w_{as}(\phi_{sm}) \\ w_{bs}(\phi_{sm}) \\ w_{cs}(\phi_{sm}) \end{bmatrix} = W_{s1} \begin{bmatrix} \sin\left(\frac{P}{2} \phi_{sm} + \frac{2\pi}{3}\right) \\ \sin\left(\frac{P}{2} \phi_{sm} - 0\right) \\ \sin\left(\frac{P}{2} \phi_{sm} - \frac{2\pi}{3}\right) \end{bmatrix} - W_{s3} \begin{bmatrix} \sin\left(\frac{3P}{2} \phi_{sm}\right) \\ \sin\left(\frac{3P}{2} \phi_{sm}\right) \\ \sin\left(\frac{3P}{2} \phi_{sm}\right) \end{bmatrix} \end{equation} $

By matching the given equation to the prescribed form, it is determined that $ \frac{P}{2} = 2 $, $ W_{s1} = 100 $ turns, and $ W_{s3} = 10 $ turns. The $ a $-phase winding function may be written posthaste.

$ \begin{equation} \boxed{w_{as}(\phi_{sm}) = 100 \sin\left(2\phi_{sm} + \frac{2\pi}{3}\right) - 10\sin(6\phi_{sm})} \end{equation} $


Discussion



Back to PE-1, August 2014

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009