Revision as of 18:09, 20 July 2017 by Sun361 (Talk | contribs)


ECE Ph.D. Qualifying Exam

Computer Engineering(CE)

Question 1: Algorithms

August 2013


Solution 1

This problem can be solved using dynamic programming. For each docks $ x_i $, compute the revenue from $ x_1 $ to $ x_i $, if $ x_i $ is selected, and the remaining docks $ x_{i+1} $ to $ x_n $, if $ x_i $ is not selected.

$ R[i] $: denote the total revenue using only sites $ x_1, \dots , x_i $.

$ L[i] $: denote $ i $ with the greatest value such that $ x_i $ is used for the solution in $ R[i] $.

Initially, $ L[<=0]=0 $, $ R[<=0]=0 $, $ x_0 = -\infty $, $ r_0=0 $. The pseudo code for dynamic programming is showing below. Note we use bottom up to fill up $ R $ and $ L $.

Pseudo code for dynamic programming

In the end of the program, $ R[n] $ will be the maximum revenue, and $ L[n] $, $ L[L[n]] $, ... will be the indices of locations to choose.


Back to QE CE question 2, August 2013

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva