Revision as of 13:33, 24 November 2016 by Mboutin (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


Homework 9 Solution, ECE438, Fall 2016, Prof. Boutin

Question 1

a)

$ y[n]= \frac{x[n]+x[n-2]}{2} $

Applying Z-transform on both sides and grouping terms, we can obtain the transfer function

$ \begin{align} Y[z]&= \frac{X[z]+X[z]z^{-2}}{2} \\ \frac{Y[z]}{X[z]}&= \frac{1+z^{-2}}{2} \\ H[z] &= \frac{1+z^{-2}}{2} \\ \end{align} $

Frequency Response $ H(\omega) $

$ \begin{align} H[e^{j\omega }] &= \frac{1+e^{-2j\omega }}{2} \\ &= e^{-j\omega } \left( \frac{e^{j\omega}+e^{-j\omega}}{2} \right) \\ &= e^{-j\omega } cos \left( \omega \right) \\ \end{align} $


Zero-pole plot

HW6Q1fig1.jpg

Frequency response

HW6Q1fig2.jpg

b)

$ y[n]= \frac{x[n]-x[n-1]}{2} $

Applying Z-transform on both sides and grouping terms, we can obtain the transfer function

$ \begin{align} Y[z]&= \frac{X[z]-X[z]z^{-1}}{2} \\ \frac{Y[z]}{X[z]}&= \frac{1-z^{-1}}{2} \\ H[z] &= \frac{1-z^{-1}}{2} \\ \end{align} $

Frequency Response $ H(\omega) $

$ \begin{align} H[e^{j\omega }] &= \frac{1-e^{-j\omega }}{2} \\ &= e^{-j\frac{\omega }{2}} \left( \frac{e^{j\frac{\omega }{2}}-e^{-j\frac{\omega }{2}}}{2} \right) \\ &= je^{-j\frac{\omega }{2}} \left( \frac{e^{j\frac{\omega }{2}}-e^{-j\frac{\omega }{2}}}{2j} \right) \\ &= je^{-j\frac{\omega }{2}} sin \left( \frac{\omega }{2} \right) \\ \end{align} $


Zero-pole plot

HW6Q1fig3.jpg

Frequency response

HW6Q1fig4.jpg


Question 2

The frequency response is $ {\mathcal H}(\omega) = 1 + 2 e^{-j\omega } + e^{-2j\omega } $. Here are 5 different ways to compute it.

  • Use pure frequency $ e^{j\omega_0 n} $ as an input; the output will be that same pure frequency $ e^{j\omega_0 n} $ multiplied by $ {\mathcal H}(\omega)_0 $.
  • Set $ x[n]=\delta[n] $ to get the unit impulse response h[n] of the system. Then Fourier transform $h[n]$ to get the frequency response.
  • Set $ x[n]=\delta[n] $ to get the unit impulse response h[n] of the system. Then z-transform $h[n]$ to get the transfer function of the system, and subsequently restrict the transfer function to the unit circle to get the frequency response.
  • Take the Fourier transform of the left-hand-side and right-hand-side of the equation. Then use the fact that $ \frac{{\mathcal Y}(\omega)}{{\mathcal Y}(\omega)}={\mathcal H}(\omega) $ to get the frequency response of the system.
  • Take the z-transform of the left-hand-side and right-hand-side of the equation. Then use the fact that $ \frac{Y(z)}{X(z)}=H(z) $ to get the transfer function of the system. Finally restrict the transfer function to the unit circle to get the frequency response.

Question 3

a. Sketch the locations of the poles and zeros.

$ \begin{align} H(z) &= \frac{1-\frac{1}{2}z^{-2}}{1-\frac{1}{\sqrt{2}} z^{-1} +\frac{1}{4} z^{-2}} \\ H(z) &= \frac{(z+\frac{1}{\sqrt{2}})(z-\frac{1}{\sqrt{2}})} { (z-(\frac{1}{2\sqrt{2}} + j\frac{1}{2\sqrt{2}}))(z-(\frac{1}{2\sqrt{2}} - j\frac{1}{2\sqrt{2}})) } \\ \end{align} $

Zeros:
$ z_1 = \frac{1}{\sqrt{2}}, z_2 = -\frac{1}{\sqrt{2}} $
Poles:
$ p_1 = \frac{1}{2\sqrt{2}} + j\frac{1}{2\sqrt{2}}, p_2 = \frac{1}{2\sqrt{2}} - j\frac{1}{2\sqrt{2}} $

Zp1.jpg

b. Determine the magnitude and phase of the frequency response H(ω), for

$ \omega = 0 $

Zp2.jpg

$ \left| H(e^{j\omega}) \right| = \left| H(e^{j0}) \right| = \left| H(z=1) \right| $
$ = \left| \frac{(1+\frac{1}{\sqrt{2}})(1-\frac{1}{\sqrt{2}})} { (1-(\frac{1}{2\sqrt{2}} + j\frac{1}{2\sqrt{2}}))(1-(\frac{1}{2\sqrt{2}} - j\frac{1}{2\sqrt{2}})) } \right| = 0.921 $
$ \angle H(e^{j0}) = \angle c + \angle d - \angle a - \angle b = 0 $


$ \omega =\frac{\pi}{4} $

Zp3.JPG

$ \left| H(e^{j\omega}) \right| = \left| H(e^{j\frac{\pi}{4}}) \right| = \left| H(z=\frac{1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}) \right| $
$ = \left| \frac{(\frac{1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}})(\frac{1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}})} { (\frac{1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}-(\frac{1}{2\sqrt{2}} + j\frac{1}{2\sqrt{2}}))(\frac{1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}-(\frac{1}{2\sqrt{2}} - j\frac{1}{2\sqrt{2}})) } \right| = 2 $
$ \angle H(e^{j\frac{\pi}{4}}) = \angle c + \angle d - \angle a - \angle b = \frac{\pi}{2} + arctan^{-1} \left( \frac{\frac{1}{\sqrt{2}}}{\sqrt{2}} \right) - \frac{\pi}{4} - arctan^{-1} \left( \frac{\frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}}}{1-\sqrt{2}-\frac{1}{2\sqrt{2}}} \right) = 0 $

$ \omega =\frac{\pi}{2} $

Zp4.jpg

$ \left| H(e^{j\omega}) \right| = \left| H(e^{j\frac{\pi}{2}}) \right| = \left| H(z=j) \right| $

$ = \left| \frac{(j+\frac{1}{\sqrt{2}})(j-\frac{1}{\sqrt{2}})} { (j-(\frac{1}{2\sqrt{2}} + j\frac{1}{2\sqrt{2}}))(j-(\frac{1}{2\sqrt{2}} - j\frac{1}{2\sqrt{2}})) } \right| = 1.455 $


$ \angle H(e^{j\frac{\pi}{2}}) = (\angle c + \angle d) - \angle a - \angle b = (\pi) - (arctan^{-1}\left( \frac{1-\frac{1}{2\sqrt{2}}}{\frac{-1}{\sqrt{2}}} \right) + \pi) - (arctan^{-1}\left( \frac{1+\frac{1}{2\sqrt{2}}}{1-\frac{1}{\sqrt{2}}} \right) + \pi) = -0.7563 $

$ \omega =\frac{3\pi}{4} $

Zp5.JPG

$ \left| H(e^{j\omega}) \right| = \left| H(e^{j\frac{3\pi}{4}}) \right| = \left| H(z=\frac{-1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}) \right| $

$ = \left| \frac{(\frac{-1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}})(\frac{-1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}})} { (\frac{-1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}-(\frac{1}{2\sqrt{2}} + j\frac{1}{2\sqrt{2}}))(\frac{-1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}-(\frac{1}{2\sqrt{2}} - j\frac{1}{2\sqrt{2}})) } \right| = \frac{2}{3} $

$ \angle H(e^{j\frac{3\pi}{4}}) = \angle c + \angle d - \angle a - \angle b = (arctan^{-1}\left( \frac{\frac{1}{\sqrt{2}}}{\frac{-2}{\sqrt{2}}} \right) + \pi) + \frac{\pi}{2} - (arctan^{-1}\left( \frac{\frac{1}{\sqrt{2}} - \frac{1}{2\sqrt{2}}}{\frac{1}{\sqrt{2}} - \frac{1}{2\sqrt{2}}} \right) + \pi) + \frac{3\pi}{4} = -0.9273 $


$ \omega =\pi $

Zp6.JPG

$ \left| H(e^{j\omega}) \right| = \left| H(e^{j\pi}) \right| = \left| H(z=-1) \right| $
$ = \left| \frac{(-1+\frac{1}{\sqrt{2}})(-1-\frac{1}{\sqrt{2}})} { (-1-(\frac{1}{2\sqrt{2}} + j\frac{1}{2\sqrt{2}}))(-1-(\frac{1}{2\sqrt{2}} - j\frac{1}{2\sqrt{2}})) } \right| = 0.255 $

$ \angle H(e^{j\pi}) = (\angle c + \angle d) - \angle a - \angle b = 2\pi - 0 - 0 = 2\pi $

c. Is the system stable? Explain why or why not?
The system is causal and the ROC extends outwards from the outermost pole since |$ p_1 $| = |$ p_2 $| < 1 and this ROC contains the unit circle. Therefore the system is stable.

d. Find the difference equation for y[n] in terms of x[n], corresponding to this transfer function H(z).

$ H(z) = \frac{Y(z)}{X(z)} = \frac{1-\frac{1}{2}z^{-2}}{1-\frac{1}{\sqrt{2}} z^{-1} +\frac{1}{4} z^{-2}} $
$ Y(z)(1-\frac{1}{\sqrt{2}} z^{-1} +\frac{1}{4} z^{-2}) = X(z)(1-\frac{1}{2}z^{-2}) $

Taking inverse,
$ y[n]-\frac{1}{\sqrt{2}}y[n-1] + \frac{1}{4}y[n-2] = x[n] - \frac{1}{2}x[n-2] $
$ y[n] = x[n] - \frac{1}{2}x[n-2] +\frac{1}{\sqrt{2}}y[n-1] - \frac{1}{4}y[n-2] $


Question 4


$ y[n]=\frac{1}{8} \left( x[n]+x[n-1]+x[n-2]+x[n-3]+x[n-4]+x[n-5]+x[n-6]+x[n-7]\right) $

a.
$ h[n]=\frac{1}{8} \left( \delta[n]+\delta[n-1]+\delta[n-2]+\delta[n-3]+\delta[n-4]+\delta[n-5]+\delta[n-6]+\delta[n-7] \right) $
This is a finite duration response.


b. $ H[z]=\frac{1}{8} \left( 1+z^{-1}+z^{-2}+z^{-3}+z^{-4}+z^{-5}+z^{-6}+z^{-7} \right) $
$ H[z]=\frac{1}{8} \left( \frac{1-z^{-8}}{1-z^{-1}} \right) $


c.

$ H[z]=\frac{1}{8} \left( \frac{z^{8}-1}{z^{7}(z-1)} \right) $
Zp7.jpg
Poles:
$ p_1 = 1 $
$ p_2 = p_3 = ... = p_8 = 0 $

Zeros:
$ z^{8} - 1 = 0 $
$ z^{8} = e^{j2\pi } $

Generalizing,
$ z_k = e^{j2\pi k/8 } $ for k = 0,1,2,...,7


Question 5

a.
$ y[n]= \frac{1}{8} \left( x[n]-x[n-8]+y[n-1] \right) $

Using z-transform,
$ Y(z) = \frac{1}{8} \left( X(z)-X(z)z^{-8} + Y(z)z^{-1} \right) $
$ Y(z) (1 - \frac{1}{8}z^{-1}) = X(z) \frac{1}{8}(1 - z^{-8}) $
$ H(z) = \frac{Y(z)}{X(z)} = \frac{1}{8} \left( \frac{ 1 - z^{-8} } {1 - \frac{1}{8}z^{-1}} \right) $

b.

HW6Q5fig1.jpg

c. H(z) can be re-written as
$ H[z]=\frac{1}{8} \left( \frac{1}{1-\frac{1}{8}z^{-1}} - \frac{z^{-8}}{1-\frac{1}{8}z^{-1}} \right) $
Assuming the ROC: $ |z|>\frac{1}{8} $ Taking inverse Z-transform of H(z) -
$ h[n]=\frac{1}{8} \left( (\frac{1}{8})^n u[n] - (\frac{1}{8})^{n-8} u[n-8] \right) $

This is a infinite duration response.



Back to ECE438, Fall 2016, Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang