Revision as of 14:29, 21 April 2015 by Rhea (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


Practice Question on "Signals and Systems"

More Practice Problems

Topic: Signal Power


Question

Compute the power of the signal $ x(t)= 2j $


Share your answers below (optional)

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions!


Answer 1

$ P_{\infty}=\lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T | x(t) |^2 dt = \lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T 4 dt = \lim_{T\rightarrow \infty} {1 \over {2T}} 4t \Big| ^T _{-T} = \lim_{T\rightarrow \infty} {1 \over {2T}} 8T = 4 $

  • looks good!

Answer 2

$ P_{\infty}=\lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-\infty}^\infty| x(t) |^2 dt = \lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-\infty}^\infty 4 dt = \lim_{T\rightarrow \infty} {1 \over {2T}} \infty= \frac{\infty}{\infty}=1 $

  • You made a limit manipulation error.

Answer 3

$ P_{\infty}=\lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T (2j)^2 dt = \lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T -4 dt = \lim_{T\rightarrow \infty} {1 \over {2T}} -4t \Big| ^T _{-T} = \lim_{T\rightarrow \infty} {1 \over {2T}} -8T = -4 $

  • Power cannot be negative, so your answer cannot be correct.

Answer 4

$ |x|^2=4 \quad 4 \frac{\infty}{\infty}=4 $

  • Sorry but I don't understand your explanation.

Back to Signal Power

Alumni Liaison

EISL lab graduate

Mu Qiao