Revision as of 16:12, 26 February 2015 by Rhea (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


Collective Table of Formulas

Indefinite Integrals with $ \ln x $

click here for more formulas


$ \int\ln x dx=x\ln x-x +C $
$ \int x\ln x dx=\dfrac{x^{2}}{2}(\ln x-\frac{1}{2})+C $
$ \int x^{m}\ln x dx=\dfrac{x^{m+1}}{m+1}(\ln x-\frac{1}{m+1}) +C $
$ \int\dfrac{\ln x}{x} dx=\frac{1}{2}\ln^{2}x +C $
$ \int\dfrac{\ln x}{x^{2}} dx=-\dfrac{\ln x}{x}-\dfrac{1}{x} +C $
$ \int\ln^{2}x dx=x\ln^{2}x-2x\ln x+2x +C $
$ \int\dfrac{\ln^{n}x}{x} dx=\dfrac{\ln^{n+1}x}{n+1} +C $
$ \int\dfrac{dx}{x\ln x}=\ln(\ln x) +C $
$ \int\dfrac{dx}{\ln x}=\ln(\ln x)+\ln x+\dfrac{\ln^{2}x}{2\cdot2!}+\dfrac{\ln^{3}x}{3\cdot3!}+\cdots +C $
$ \int\dfrac{x^{m}dx}{\ln x}=\ln(\ln x)+(m+1)\ln x+\dfrac{(m+1)^{2}\ln^{2}x}{2\cdot2!}+\dfrac{(m+1)^{3}\ln^{3}x}{3\cdot3!}+\cdots +C $
$ \int\ln^{n}x dx=x\ln^{n}x-n\int\ln^{n-1}x dx $
$ \int x^{m}\ln^{n}x dx=\dfrac{x^{m+1}\ln^{n}x}{m+1}-\dfrac{n}{m+1}\int x^{m}\ln^{n-1}x dx +C $
$ \int\ln(x^{2}+a^{2}) dx=x\ln(x^{2}+a^{2})-2x+2a\tan^{-1}\dfrac{x}{a} +C $
$ \int\ln(x^{2}-a^{2}) dx=x\ln(x^{2}-a^{2})-2x+a\ln(\dfrac{x+a}{x-a}) +C $
$ \int x^{m}\ln(x^{2}\pm a^{2}) dx=\dfrac{x^{m}\ln(x^{2}\pm a^{2})}{m+1}-\dfrac{2}{m+1}\int\dfrac{x^{m+2}}{x^{2}\pm a^{2}}dx $


Back to Table of Indefinite Integrals

Back to Collective Table of Formulas

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang