Revision as of 14:51, 26 February 2015 by Rhea (Talk | contribs)


Collective Table of Formulas

Indefinite Integrals with $ x^n+a^n $

click here for more formulas


$ x^2 + a^2 $
$ \int \frac {d x}{ x^2 + a^2} \ = \ \frac {1}{a} \arctan \ \frac {x}{a} +C $
$ \int \frac {x \ d x}{x^2 + a^2} = \frac {1}{2} \ln \left ( x^2 + a^2 \right ) +C $
$ \int \frac {x^2 \ d x }{x^2 + a^2} = x \ - \ a \arctan \frac {x}{a} +C $
$ \int \frac {x^3 \ d x}{x^2 + a^2} = \frac{x^2}{2} - \frac{a^2}{2} \ln (x^2+a^2) +C $
$ \int \frac {d x}{ x(x^2 + a^2)} = \frac {1}{2a^2} \ln \left ( \frac {x^2}{x^2 + a^2} \right )+C $
$ \int \frac {d x}{x^2(x^2 + a^2)} = - \frac {1}{a^2x} - \frac {1}{a^3} \arctan \frac {x}{a}+C $
$ \int \frac {d x}{x^3(x^2 + a^2)} = - \frac {1}{2a^2x^2} - \frac {1}{2a^4} \ln \left ( \frac {x^2}{x^2 + a^2} \right ) +C $
$ \int \frac {d x}{(x^2 +a^2)^2} =\frac {x}{2a^2(x^2+a^2)} + \frac {1}{2a^3} \arctan \frac {x}{a} +C $
$ \int \frac {x d x}{(x^2 +a^2)^2} = \frac {-1}{2(x^2 + a^2)}+C $
$ \int \frac {x^2 d x}{(x^2 +a^2)^2} = \frac {-x}{2(x^2 + a^2)} + \frac {1}{2a} \arctan \frac {x}{a}+C $
$ \int \frac {x^3 d x}{(x^2 +a^2)^2} = \frac {a^2}{2(x^2 + a^2)} + \frac{1}{2} \ln(x^2 + a^2) +C $
$ \int \frac {d x}{ x(x^2 + a^2)^2} = \frac {1}{2a^2(x^2+a^2)} + \frac{1}{2a^4} \ln \left ( \frac {x^2}{x^2 + a^2} \right ) +C $
$ \int \frac {d x}{x^2(x^2 + a^2)^2} = - \frac {1}{a^4x} - \frac {x}{2a^4(x^2 + a^2)} - \frac {3}{2a^5} \arctan \frac {x}{a} +C $
$ \int \frac {d x}{ x^3(x62 +a^2)^2} = - \frac {1}{2a^4x^2} - \frac {1}{2a^4(x^2+a^2)} - \frac {1}{a^6} \ln \left ( \frac {x^2}{x^2 + a^2} \right ) +C $
$ \int \frac {d x}{(x^2 + a^2)^n} = \frac {x}{2(n-1)a^2(x^2 + a^2)^{n-1}} + \frac {2n -3}{(2n - 2)a^2} \int \frac {d x}{(x^2 + a^2)^{n-1}} +C $
$ \int \frac {x dx}{(x^2+a^2)^n} = \frac {-1}{2(n-1)(x^2 + a^2)^{n-1}} +C $
$ \int \frac {d x}{x(x^2 +a^2)^n} = \frac {1}{2(n-1)a^2(x^2+a^2)^{n-1}} + \frac {1}{a^2} \int \frac {d x}{x(x^2 + a^2)^{n-1}} +C $
$ \int \frac {x^m d x}{(x^2 + a^2)^n} = \int \frac {x^{m-2} d x}{(x^2+a^2)^{n-1}} - a^2 \ \int \frac {x^{m-2} d x}{(x^2 + a^2)^n}+C $
$ \int \frac {d x}{x^m (x^2 +a^2)^n} = \frac {1}{a^2} \int \frac {d x}{x^m(x^2+a^2)^{n-1}} - \frac {1}{a^2} \int \frac {d x}{ x^{m-2}(x^2+a^2)^n} +C $
$ \sqrt{x^2+a^2} $
$ \int \dfrac{dx}{\sqrt{x^2+a^2}} = \ln\left(x+\sqrt{x^2+a^2}\right) \qquad o\grave{u}\qquad Arg sh \dfrac{x}{a}+C $
$ \int \dfrac{xdx}{\sqrt{x^2+a^2}} = \sqrt{x^2+a^2}+C $
$ \int \dfrac{x^2dx}{\sqrt{x^2+a^2}} = \dfrac{x\sqrt{x^2+a^2}}{2} - \dfrac{a^2}{2}\ln\left(x+\sqrt{x^2+a^2}\right)+C $
$ \int \dfrac{x^3dx}{\sqrt{x^2+a^2}} = \dfrac{\left(x^2+a^2\right)^{3/2}}{3} - a^2\sqrt{x^2+a^2}+C $
$ \int \dfrac{dx}{x\sqrt{x^2+a^2}} = -\dfrac{1}{a} \ln\left(\dfrac{a+\sqrt{x^2+a^2}}{x}\right)+C $
$ \int \dfrac{dx}{x^2\sqrt{x^2+a^2}} = -\dfrac{\sqrt{x^2+a^2}}{a^2x}+C $
$ \int \dfrac{dx}{x^3\sqrt{x^2+a^2}} = -\dfrac{\sqrt{x^2+a^2}}{2a^2x^2} + \dfrac{1}{2a^3}\ln\left(\dfrac{a+\sqrt{x^2+a^2}}{x}\right)+C $
$ \int \sqrt{x^2+a^2}dx = \dfrac{x\sqrt{x^2+a^2}}{2} + \dfrac{a^2}{2}\ln\left(x+\sqrt{x^2+a^2}\right)+C $
$ \int x\sqrt{x^2+a^2}dx = \dfrac{\left(x^2+a^2\right)^{3/2}}{3}+C $
$ \int x^2\sqrt{x^2+a^2}dx = \dfrac{x\left(x^2+a^2\right)^{3/2}}{4} - \dfrac{a^2x\sqrt{x^2+a^2}}{8} - \dfrac{a^4}{8}\ln\left(x+\sqrt{x^2+a^2}\right)+C $
$ \int x^3\sqrt{x^2+a^2}dx = \dfrac{\left(x^2+a^2\right)^{5/2}}{5} - \dfrac{a^2\left(x^2+a^2\right)^{3/2}}{3}+C $
$ \int \dfrac{\sqrt{x^2+a^2}}{x}dx = \sqrt{x^2+a^2} - a\ln\left(\dfrac{a+\sqrt{x^2+a^2}}{x}\right)+C $
$ \int \dfrac{\sqrt{x^2+a^2}}{x^2}dx = -\dfrac{\sqrt{x^2+a^2}}{x} + \ln\left(x+\sqrt{x^2+a^2}\right)+C $
$ \int \dfrac{\sqrt{x^2+a^2}}{x^3}dx = -\dfrac{\sqrt{x^2+a^2}}{2x^2} - \dfrac{1}{2a}\ln\left(\dfrac{a+\sqrt{x^2+a^2}}{x}\right)+C $
$ \int \dfrac{dx}{\left(x^2+a^2\right)^{3/2}} = \dfrac{x}{a^2\sqrt{x^2+a^2}}+C $
$ \int \dfrac{xdx}{\left(x^2+a^2\right)^{3/2}} = \dfrac{-1}{\sqrt{x^2+a^2}}+C $
$ \int \dfrac{x^2dx}{\left(x^2+a^2\right)^{3/2}} = \dfrac{-x}{\sqrt{x^2+a^2}} +\ln\left(x+\sqrt{x^2+a^2}\right)+C $
$ \int \dfrac{x^3dx}{\left(x^2+a^2\right)^{3/2}} = \sqrt{x^2+a^2} + \dfrac{a^2}{\sqrt{x^2+a^2}}+C $
$ \int \dfrac{dx}{x\left(x^2+a^2\right)^{3/2}} = \dfrac{1}{a^2\sqrt{x^2+a^2}} - \dfrac{1}{a^3}\ln\left(\dfrac{a+\sqrt{x^2+a^2}}{x}\right)+C $
$ \int \dfrac{dx}{x^2\left(x^2+a^2\right)^{3/2}} = -\dfrac{\sqrt{x^2+a^2}}{a^4x} - \dfrac{x}{a^4\sqrt{x^2+a^2}}{x}+C $
$ \int \dfrac{dx}{x^3\left(x^2+a^2\right)^{3/2}} = \dfrac{-1}{2a^2x^2\sqrt{x^2+a^2}} - \dfrac{3}{2a^4\sqrt{x^2+a^2}} + \dfrac{3}{2a^5}\ln\left(\dfrac{a+\sqrt{x^2+a^2}}{x}\right)+C $
$ \int \left(x^2+a^2\right)^{3/2}dx = \dfrac{x\left(x^2+a^2\right)^{3/2}}{4} + \dfrac{3a^2x\sqrt{x^2+a^2}}{8} + \dfrac{3}{8}a^4\ln\left(x+\sqrt{x^2+a^2}\right)+C $
$ \int x\left(x^2+a^2\right)^{3/2}dx = \dfrac{\left(x^2+a^2\right)^{5/2}}{5}+C $
$ \int x^2\left(x^2+a^2\right)^{3/2}dx = \dfrac{x\left(x^2+a^2\right)^{5/2}}{6} - \dfrac{a^2x\left(x^2+a^2\right)^{3/2}}{24} - \dfrac{a^4x\sqrt{x^2+a^2}}{16} + \dfrac{a^6}{16}\ln\left(x+\sqrt{x^2+a^2}\right)+C $
$ \int x^3\left(x^2+a^2\right)^{3/2}dx = \dfrac{\left(x^2+a^2\right)^{7/2}}{7} - \dfrac{a^2\left(x^2+a^2\right)^{5/2}}{5}+C $
$ \int \dfrac{\left(x^2+a^2\right)^{3/2}}{x}dx = \dfrac{\left(x^2+a^2\right)^{3/2}}{3} + a^2\sqrt{x^2+a^2} - a^3\ln\left(\dfrac{a+\sqrt{x^2+a^2}}{x}\right)+C $
$ \int \dfrac{\left(x^2+a^2\right)^{3/2}}{x^2}dx = - \dfrac{\left(x^2+a^2\right)^{3/2}}{x} + \dfrac{3x\sqrt{x^2+a^2}}{2} + \dfrac{3}{2}a^2\ln\left(x+\sqrt{x^2+a^2}\right)+C $
$ \int \dfrac{\left(x^2+a^2\right)^{3/2}}{x^3}dx = - \dfrac{\left(x^2+a^2\right)^{3/2}}{2x^2} + \dfrac{3}{2}\sqrt{x^2+a^2} - \dfrac{3}{2}a\ln\left(\dfrac{a+\sqrt{x^2+a^2}}{x}\right)+C $

Back to Table of Indefinite Integrals

Back to Collective Table of Formulas

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010