Revision as of 15:13, 25 February 2015 by Rhea (Talk | contribs)


HW1, ECE301, Fall 2008, Prof. Boutin

Problem

Given complex signal $ f(t)=e^{jt} = \cos(t) + j \sin(t) $, find $ E_\infty $ and $ P_\infty $.

Background Knowledge

$ E_\infty(x(t)) = \int_{-\infty}^\infty |x(t)|^2\,dt $

$ P_\infty(x(t)) = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T |x(t)|^2\,dt) $


Solution 1

  • $ |x(t)| = |\cos(t) + j \sin(t)| = \sqrt{(\cos(t))^2+(\sin(t))^2} = \sqrt{1} = 1 $
  • $ E_\infty(x(t)) = \int_{-\infty}^\infty |x(t)|^2\,dt = \int_{-\infty}^\infty 1\,dt = t|_{-\infty}^{\infty} = \infty $
  • $ P_\infty(x(t)) = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T |x(t)|^2\,dt) = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T 1\,dt) = \lim_{T \to \infty} (\frac{1}{2T} t|_{-T}^T) $

$ = \lim_{T \to \infty} (\frac{1}{2T} (2T)) = \lim_{T \to \infty} (1) = 1 $


Solution 2

$ |x(t)|=|\cos(t)+\jmath\sin(t)|=\sqrt{\cos^2(t)+\sin^2(t)}=1 $

$ E\infty=\int_{-\infty}^\infty |x(t)|^2\,dt $

   $ E\infty=\int_{-\infty}^\infty |1|^2\,dt=t|_{-\infty}^\infty $
   $ E\infty=\infty $

$ P\infty=lim_{T \to \infty} \ 1/(2T)\int_{-T}^{T} |x(t)|^2\,dt $

   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int|1|^2dt $
   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*t|_{-T}^T $  (*) 
   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*(T-(-T)) $  (*) 
   $ P\infty=lim_{T \to \infty} \ 1 $
   $ P\infty=1 $

*I would be careful using the start symbol to denote multiplication in this context. The start symbol is typically used for denoting convolution in electrical engineering.


Back to CT signal energy page

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010