Revision as of 16:30, 12 November 2014 by Tai1 (Talk | contribs)


ECE Ph.D. Qualifying Exam in Communication Networks Signal and Image processing (CS)

Question 5, August 2013, Problem 1

Problem 1 ,Problem 2

Solution 1:

a) Since

$ X(e^{j\mu},e^{j\nu}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m,n)e^{-j(m\mu+n\nu)} $

and

$ p_0(e^{jw}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m,n)e^{-jnw} $, 

we have:

p0(ej'w) = X(ejμ,ejw) | μ = 0

b) Similarly to a), we have:

p1(ej'w) = X(ejw,ejν) | ν = 0

c)
$ \sum_{n=-\infty}^{\infty} p_0(n) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m,n) = X(e^{j\mu}, e^{j\nu}) |_{\mu=0, \nu=0} $ which is the DC point of the image.

d) No, it can't provide sufficient information. From the expression in a) and b), we see that p0(ej'w)and <span class="texhtml" />p1(ejw) are only slices of the DSFT. It lost the information when μ and ν are not zero. A simple example would be: Let
$ x(m,n) = \left[ {\begin{array}{*{20}{c}} 1 ~ 2 \\ 3 ~ 4\\ \end{array}} \right] $, so
$ p_0(n) =[4~6], p_1(m) = [3 ~7]^T $. With the above the information of the projection, the original form of the 2D signal cannot be determined. For example, $ x(m,n) = \left[ {\begin{array}{*{20}{c}} 2 ~ 1 \\ 2 ~ 5\\ \end{array}} \right] $ gives the same projection.

Solution 2:

a) From the question, 

$ P_0(e^{j\mu}) = \sum_{n=-\infty}^{\infty}p_0(n)e^{-jn\mu} = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}x(m,n) e^{-jn\mu}\cdot1 = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}x(m,n) e^{-jn\mu}e^{-jm\cdot0} = X(e^{j\mu},e^{j\cdot0}) $

Therefore, 

$ P_0(e^{j\mu}) = X(e^{j\mu},e^{j\nu})\vert_{\nu = 0} $

b) Similar to question a), 

$ P_1(e^{j\nu}) = \sum_{m=-\infty}^{\infty}p_1(m)e^{-jm\mu} = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}x(m,n) e^{-jm\nu}\cdot1 = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}x(m,n) e^{-jn\cdot0}e^{-jm\nu} = X(e^{j\cdot0},e^{j\nu}) $

Therefore,

$ P_0(e^{j\mu}) = X(e^{j\mu},e^{j\nu})\vert_{\mu = 0} $

c)

$ \sum_{n = -\infty}^{\infty}p_0(n) = \sum_{n = -\infty}^{\infty} \sum_{m = -\infty}^{\infty} x(m,n) =\sum_{n = -\infty}^{\infty} \sum_{m = -\infty}^{\infty} x(m,n) e^{-jn\cdot0}e^{-jm\cdot0} = X(e^{-jn\cdot0},e^{-jm\cdot0}) = X(e^{j\mu},e^{j\nu})\vert_{\mu = 0, \nu = 0} $

d)No. P0  only represents the μ axis on X(ejμ,ejν). P1 only represents the ν axis on X(ejμ,ejν). It is not enough to represent X(ejμ,ejν).

For example, 

$ A = \left [ \begin{array}{cc} 3 & 4 \\ 5 & 6 \end{array} \right ] $ and $ A = \left [ \begin{array}{cc} 4 & 3 \\ 4 & 7 \end{array} \right ] $ have the same $ p_0 and p_1 $


Related Problem

1.Let g(x,y) = s'i'n'c(x / 2,y / 2), and let <span class="texhtml" />s(m,n) = g('T,n'T) where T = 1.

a) Calculate G(μ,ν) the CSFT of g(x,y).
b) Calculate S(ejμ,ejν) the DSFT of s(m,n).


Back to ECE QE page:

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva