Revision as of 12:50, 4 November 2014 by Wang1211 (Talk | contribs)


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2013



Part 4

Consider a sequence of independent random variables $ X_1,X_2,... $, where $ X_n $ has pdf

$ \begin{align}f_n(x)=&(1-\frac{1}{n})\frac{1}{\sqrt{2\pi}\sigma}exp[-\frac{1}{2\sigma^2}(x-\frac{n-1}{n}\sigma)^2]\\ &+\frac{1}{n}\sigma exp(-\sigma x)u(x)\end{align} $.

Does this sequence converge in the mean-square sense? Hint: Use the Cauchy criterion for mean-square convergence, which states that a sequence of random variables $ X_1,X_2,... $ converges in mean-square if and only if $ E[|X_n-X_{n+m}|] \to 0 $ as $ n \to \infty $, for every $ m>0 $.


Solution 1

$ E(X_n)=\frac{n-1}{n}E(Y)+\frac{1}{n}E(Z) $

Where

$ Y \sim N(\frac{n-1}{n}\sigma, \sigma^2) $

$ Z \sim EXP(\sigma) $

From the property of Normal distribution and exponential distribution,

$ E(Y)=\frac{n-1}{n}\sigma $

$ E(Z)=\frac{1}{\sigma} $.

Therefore,

$ \lim_{x\to \infty}E(X_n)=\lim_{x\to \infty}(\frac{n-1}{n})^2\sigma+\frac{1}{n}\frac{1}{\sigma}=\sigma $.

Also,

$ \lim_{x\to \infty}E(X_{n+m})=\lim_{x\to \infty}(\frac{n+m-1}{n+m})^2\sigma+\frac{1}{n+m}\frac{1}{\sigma}=\sigma $.

Thus,

$ \lim_{x\to \infty}E(X_n-X_{n+m})=\lim_{x\to \infty}E(X_n)-\lim_{x\to \infty}E(X_{n+m})=0 $,

$ \lim_{x\to \infty}E(X_{n+m}-X_n)=\lim_{x\to \infty}E(X_{n+m})-\lim_{x\to \infty}E(X_n)=0 $.

So we have

$ \lim_{x\to \infty}E(|X_{n+m}-X_n|)=0 $

for every m.

From the Cauchy criterion for mean-square convergence, this sequence converges int he mean-square sense


Solution 2

$ \begin{align} E(X)&=\int_{-\infty}^{+\infty}xp(x)dx\\ &=\int_{0}^{\infty}x\lambda e^{-\lambda x}dx\\ &=-(xe^{-lambda x}|_0^{\infty}-\int_0^{\infty}e^{-\lambda x}dx)\\ &=\frac{1}{x} \end{align} $

$ \begin{align} E(X^2)&=\int_{-\infty}^{+\infty}x^2p(x)dx\\ &=\int_{0}^{\infty}x^2 \lambda e^{-\lambda x}dx\\ &=-(x^2e^{-lambda x}|_0^{\infty}-\int_0^{\infty}2xe^{-\lambda x}dx)\\ &=\frac{2}{x^2} \end{align} $

Therefore,

$ Var(X)=E(X^2)-E(X)^2=\frac{1}{\lambda^2} $

Critique on Solution 2:

Solution 2 is correct. In addition, calculating $ E(X) $ first is better since the result can be used in calculating $ E(X^2) $.


Back to QE CS question 1, August 2013

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang