Revision as of 05:23, 4 September 2008 by Thomas34 (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Cascading Systems

Problem

Consider two systems:

  • x(t) → 1 → x(t-7)
  • x(t) → 2 → x(2t)

What happens in the following?

a. x(t) → 1 → 2 → ?

b. x(t) → 2 → 1 → ?


Solution to a.

Let's start with a.

Define functions x, y, and z as follows:

x → 1 → y → 2 → z


x(t) → 1 → y(t) = x(t-7)

y(t) → 2 → z(t) = y(2t)

z(t) = y(2t)

y(2t) = x((2t)-7) = x(2t-7).


It may be helpful to consider x(t) = t.

If x(t) = t, then y(t) = x(t-7) = t-7.

If y(t) = t-7, then z(t) = y(2t) = (2t) - 7.

Then, we can simply conclude that since x(2t-7) = 2t-7, z(t) = x(2t-7).


Solution to b.

Next, we move onto b.

Define functions x, y, and z as follows:

x → 2 → y → 1 → z


x(t) → 2 → y(t) = x(2t)

y(t) → 1 → z(t) = y(t-7)

z(t) = y(t-7)

y(t-7) = x(2(t-7)) = x(2t-14).


Again, it may be helpful to consider x(t) = t.

If x(t) = t, then y(t) = x(2t) = 2t.

If y(t) = 2t, then z(t) = y(t-7) = 2(t-7) = 2t-14.

Then, we can simply conclude that since x(2t-14) = 2t-14, z(t) = x(2t-14).


Note

The answers to solutions in a and b are not the same! A cascaded system cannot be freely swapped around and be expected to behave in the same way.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood