Revision as of 19:15, 3 September 2008 by Jpfister (Talk)

MATLAB Code

%Jacob Pfister
%HW1.1

clear
clc

delta = 1/44100;
sec = 1/delta;
i = 1;

%a) Hail, Hail to old Purdue
for t = 0:delta:0.5
    y(i) = sin(2*pi*264*t);
    i = i + 1;
end
for t = (0.5 + delta):delta:0.75
    y(i) = sin(2*pi*297*t);
    i = i + 1;
end
for t = (0.75 + delta):delta:1
    y(i) = sin(2*pi*330*t);
    i = i + 1;
end
for t = (1 + delta):delta:1.5
    y(i) = sin(2*pi*352*t);
    i = i + 1;
end
for t = (1.5 + delta):delta:1.625
    y(i) = sin(2*pi*396*t);
    i = i + 1;
end
for t = (1.625 + delta):delta:1.75
    y(i) = sin(2*pi*440*t);
    i = i + 1;
end

%b) 2 Times faster

for t = (1.75 + delta):delta:2
    y(i) = sin(2*pi*264*t);
    i = i + 1;
end
for t = (2 + delta):delta:2.125
    y(i) = sin(2*pi*297*t);
    i = i + 1;
end
for t = (2.125 + delta):delta:2.5
    y(i) = sin(2*pi*330*t);
    i = i + 1;
end
for t = (2.5 + delta):delta:3
    y(i) = sin(2*pi*352*t);
    i = i + 1;
end
for t = (3 + delta):delta:3.0625
    y(i) = sin(2*pi*396*t);
    i = i + 1;
end
for t = (3.0625 + delta):delta:3.125
    y(i) = sin(2*pi*440*t);
    i = i + 1;
end

%c) y(t) = x(2t)
for t = 3.125:delta:3.625
    y(i) = sin(4*pi*264*t);
    i = i + 1;
end
for t = (3.625 + delta):delta:3.875
    y(i) = sin(4*pi*297*t);
    i = i + 1;
end
for t = (3.875 + delta):delta:4.125
    y(i) = sin(4*pi*330*t);
    i = i + 1;
end
for t = (4.125 + delta):delta:4.625
    y(i) = sin(4*pi*352*t);
    i = i + 1;
end
for t = (4.625 + delta):delta:4.75
    y(i) = sin(4*pi*396*t);
    i = i + 1;
end
for t = (4.75 + delta):delta:4.875
    y(i) = sin(4*pi*440*t);
    i = i + 1;
end

%play
sound(y,44100);

%write file
wavwrite(y,44100,32,'HailPurdueRemix.wav');

Sound File

Media:HailPurdueRemix_ECE301Fall2008mboutin.wav

Comments

I'm not sure I got the the lengths of the different notes exactly right, but it' pretty close. The transformation y(t) = x(2t) doubles the frequency, which effectively bumps the tune up an octave. This result is demonstrated in the sound file above.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett