Revision as of 05:46, 5 October 2014 by Rstein (Talk | contribs)


Nyquist Theorem

A slecture by ECE student Robert Stein

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.



The Nyquist Theorem states that it is possible to reproduce a signal from sampled version of that signal given that the sampling frequency is greater than twice the greatest frequency component of the original signal.


Proof

Let's begin by looking at X(f) and $ X_{s} $(f):

438slecture X.png

438slecture X s 2.png

Observe that $ X_{s} $(f) consists of $ (1/T_{s}) $*X(f) repeated every $ 1/T_{s} $.

If we use a low-pass filter with gain $ T_{s} $ and cutoff frequency between $ f_{m} $ and $ 1/T_{s} - f_{m} $ on $ X_{s} $(f), we can obtain the original signal if the repetitions don't overlap.

For this case to be met, $ 1/T_{s} - f_{m} $ must be greater than $ f_{m} $.

In other words,

$ \frac{1}{T_{s}} > 2f_{m} $


Note that satisfying the Nyquist condition is not necessary to perfectly reconstruct a signal from its sampling. However, if the Nyquist condition is satisfied, perfect reconstruction will be possible.



(create a question page and put a link below-- Use question page template)

Questions and comments

If you have any questions, comments, etc. please post them on this page.


Back to ECE438, Fall 2014

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva