Discrete-time Fourier transform
A slecture by ECE student Jacob Holtman
Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.
Definition
$ X(\omega) := \sum_{k=-\infty}^{\infty}x[n]e^{-j\omega k} $
$ X(\omega) $ is seen to be periodic with a period of $ 2\pi $ to see this $ \omega $ is replaced with $ \omega + 2k\pi $ where k is an integer
$ X(\omega + 2\pi) = \sum_{n=-\infty}^{\infty}x[n]e^{-j(\omega + 2k\pi)n} $
Using the multiplicative rule of exponential the $ \omega $ and $ 2k\pi $ are split into two different exponential
$ X(\omega + 2\pi) = \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}e^{2k\pi n} $
given that n and k are integers k and so $ e^{-j2k\pi n} = 1 $ from Euler's identity and so
$ X(\omega + 2\pi) = \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} $
so $ X(\omega + 2\pi) = X(\omega) $ for all $ \omega $
(create a question page and put a link below)
Questions and comments
If you have any questions, comments, etc. please post them on this page.