Revision as of 03:17, 29 September 2014 by Jholtman (Talk | contribs)


Discrete-time Fourier transform

A slecture by ECE student Jacob Holtman

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.



Definition

$ X(\omega) := \sum_{k=-\infty}^{\infty}x[n]e^{-j\omega k} $

$ X(\omega) $ is seen to be periodic with a period of $ 2\pi $ to see this $ \omega $ is replaced with $ \omega + 2k\pi $ where k is an integer

$ X(\omega + 2\pi) = \sum_{n=-\infty}^{\infty}x[n]e^{-j(\omega + 2k\pi)n} $

Using the multiplicative rule of exponential the $ \omega $ and $ 2k\pi $ are split into two different exponential

$ X(\omega + 2\pi) = \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}e^{2k\pi n} $

given that n and k are integers k and so $ e^{-j2k\pi n} = 1 $ from Euler's identity and so

$ X(\omega + 2\pi) = \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} $

so $ X(\omega + 2\pi) = X(\omega) $ for all $ \omega $




(create a question page and put a link below)

Questions and comments

If you have any questions, comments, etc. please post them on this page.


Back to ECE438, Fall 2014

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010