Revision as of 13:03, 27 September 2014 by Han162 (Talk | contribs)


Discrete-time Fourier transform (DTFT) of a sampled cosine

A slecture by ECE student Yijun Han

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.


outline

  • Introduction
  • Sampling rate above Nyquist rate
  • Sampling rate below Nyquist rate
  • Conclusion
  • References

Introduction

Consider a CT cosine signal (a pure frequency), and sample that signal with a rate above or below Nyquist rate. In this slecture, I will talk about how does the discrete-time Fourier transform of the sampling of this signal look like. Suppose the cosine signal is $ x(t)=cos(2\pi 440 t) $.

Sampling rate above Nyquist rate

The Nyquist sampling rate $ f_s=2f_M=880 $,so we pick a sample frequency 1000 which is above the Nyquist rate.

$ \begin{align} \\ x_1[n] & =x(\frac{n}{1000}) \\ & =cos(\frac{2\pi440 n}{1000}) \\ & =\frac{1}{2}(e^{\frac{j2\pi440 n}{1000}}+e^{\frac{-j2\pi440 n}{1000}})\\ \end{align} $

Since $ \frac{2\pi 440}{1000} $ is between $ -\pi $ and $ \pi $, so for $ \omega \isin [-\pi,\pi] $

$ \begin{align} \\ \mathcal{X}_1(\omega) & =\frac{1}{2}[2\pi\delta(\omega-2\pi\frac{440}{1000})+2\pi\delta(\omega+2\pi\frac{440}{1000})] \\ & = \frac{1000}{2}[\delta(\frac{1000}{2\pi}\omega-440)+\delta(\frac{1000}{2\pi}\omega+440)] \end{align} $

For all w,

$ \mathcal{X}_1(\omega) = rep_{2\pi}{\frac{1000}{2}[\delta(\frac{1000}{2\pi}\omega-440)+\delta(\frac{1000}{2\pi}\omega+440)]} $

The graph of $ \mathcal{X}_1(\omega) $ is

Xd1(w).jpg

Sampling rate below Nyquist rate

we pick a sample frequency 800 which is below the Nyquist rate.

$ \begin{align} \\ x_2[n] & =x(\frac{n}{800}) \\ & =cos(\frac{2\pi440 n}{800}) \\ & =cos(\frac{2\pi440 n}{800}-2\pi n) \\ & =cos(2\pi n \frac{-360}{800}) \\ & =cos(\frac{2\pi360 n}{800}) \\ & =\frac{1}{2}(e^{\frac{j2\pi360*n}{800}}+e^{\frac{-j2\pi360*n}{800}})\\ \end{align} $

Since $ \frac{2\pi*360}{800} $ is between $ -\pi $ and $ \pi $, so for $ \omega \isin [-\pi,\pi] $

$ \begin{align} \\ \mathcal{X}_2(\omega) & =\frac{1}{2}[2\pi\delta(\omega-2\pi\frac{360}{800})+2\pi\delta(\omega+2\pi\frac{360}{800})] \\ & = \frac{800}{2}[\delta(\frac{800}{2\pi}\omega-360)+\delta(\frac{800}{2\pi}\omega+360)] \end{align} $

For all w,

$ \mathcal{X}_2(\omega) = rep_{2\pi}{\frac{800}{2}[\delta(\frac{800}{2\pi}\omega-360)+\delta(\frac{800}{2\pi}\omega+360)]} $

The graph of $ \mathcal{X}_2(\omega) $ is

Xd2(w).jpg

Conclusion

The discrete Fourier transform of a sampled cosine signal with sample frequency f has the following properties: compared with the CTFT of cosine signal if f is above the Nyquist rate 1. $ \mathcal{X}_1(\omega) $ is a rep with period $ 2\pi $. 2. $ \mathcal{X}_1(\omega) $ re-scales by $ \frac{2\pi}{f} $. 3. $ \mathcal{X}_1(\omega) $ has amplitude of $ \f $ if f is below the Nyquist rate 1. $ \mathcal{X}_1(\omega) $ is a rep with period $ 2\pi $. 2. $ \mathcal{X}_1(\omega) $ re-scales by $ \frac{2\pi}{f-f_0} $. 3. $ \mathcal{X}_1(\omega) $ has amplitude of $ f-f_0 $

References

[1].Mireille Boutin, "ECE438 Digital Signal Processing with Applications," Purdue University August 26,2009



Questions and comments

If you have any questions, comments, etc. please post them on this page.


Back to ECE438, Fall 2014

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010