Sample Code for: Generating Random Data with Controlled Prior Probabilities
% This script contains the code fragments that are used to demonstrate the % generation of different PDFs with different priors. Primary use of would % be in decision making processes among two classes or more. % ECE662: Pattern Recognition & Decision Making Processes % Title: Generating two or more classes with controlled prior. % Date: 2014-04-14 sectionToRun = 4; switch sectionToRun case 1 % Generate Urn Example. % --------------------- greens = repmat('G', 1, 100); % Probability = 0.5 reds = repmat('R', 1, 100); % Probability = 0.5 mixed = [greens; reds]; mixed = mixed(:); G = 0; R = 0; trialCount = 20; % Pick a ball at random, with replacement. for i = 1 : trialCount randomIndex = randi(length(mixed), 1); ball = mixed(randomIndex); if ball == 'G' G = G + 1; else R = R + 1; end end disp(['Greens = ', int2str(G), ', Reds = ', int2str(R)]); case 2 % Create Gaussian data. % -------------------- sampleCount = 1000; mu = 0; sigma = 1; y = random('Normal', mu, sigma, [sampleCount, 1]); % y = sigma .* randn([sampleCount, 1]) + mu; figure; histfit(y, 100, 'normal'); case 3 % Generate 1-D Data: Two Gaussian Classes. % ---------------------- sampleCount = 10000; mu1 = -1; sigma1 = 0.5; % Class 1 Parameters. mu2 = 1; sigma2 = 1; % Class 2 Parameters. % Dataset and labels. gaussianSamples = zeros([sampleCount, 1]); sampleLabels = zeros([sampleCount, 1]); % Control via Uniform PDF. uniform = rand([sampleCount, 1]); p1 = 0.5; % Class 1 Probability. (Threshold) % % Conceptually % for i = 1 : length(uniform) % if uniform(i) < p1 % Get data for class 1. % gaussianSamples(i) = random('Normal', mu1, sigma1, 1); % sampleLabels(i) = 1; % else % gaussianSamples(i) = random('Normal', mu2, sigma2, 1); % sampleLabels(i) = 2; % end % end % Proper implementation: Logical Indexing. class1Mask = uniform <= p1; class1Count = sum(class1Mask); gaussianSamples(class1Mask, :) = random('Normal', mu1, sigma1, [class1Count, 1]); sampleLabels(class1Mask) = 1; class2Mask = uniform > p1; class2Count = sum(class2Mask); gaussianSamples(class2Mask, :) = random('Normal', mu2, sigma2, [class2Count, 1]); sampleLabels(class2Mask) = 2; disp(['Class 1 = ', int2str(class1Count), ', Class 2 = ', int2str(class2Count)]); case 4 % Generate N-D Data: Two Gaussian Classes. % ---------------------- N = 5; sampleCount = 10000; mu1 = 4 * ones(N, 1); sigma1 = diag(3 * ones(N, 1)); % Class 1 Parameters. mu2 = 1 * ones(N, 1); sigma2 = diag(2 * ones(N, 1)); % Class 2 Parameters. % Dataset and labels. gaussianSamples = zeros([sampleCount, N]); sampleLabels = zeros([sampleCount, 1]); % Control via Uniform PDF. uniform = rand([sampleCount, 1]); p1 = 0.25; % Class 1 Probability. (Threshold) % Proper implementation: Logical Indexing. class1Mask = uniform <= p1; class1Count = sum(class1Mask); gaussianSamples(class1Mask, :) = mvnrnd(mu1, sigma1, class1Count); sampleLabels(class1Mask) = 1; class2Mask = uniform > p1; class2Count = sum(class2Mask); gaussianSamples(class2Mask, :) = mvnrnd(mu2, sigma2, class2Count); sampleLabels(class2Mask) = 2; disp(['Class 1 = ', int2str(class1Count), ', Class 2 = ', int2str(class2Count)]); end
Link back to page