Revision as of 10:16, 2 May 2014 by Nessr (Talk | contribs)

Hypothesis Testing

模式识别 的目标是将新观察的特征向量进行分类。为了进行分类的决定,需要通过魔钟判决规则(decision rule)。在 统计学模式识别 一般假设特征向量是个随机变量“X”,又有个概率密度函数或者概率质量函数,并且此函数依赖其分类。如下假设有两个类型:(ω12), 以便写公式也不失一般性。如此X的概率密度或质量函数是P(X | ωi) (如下称pdf)。每个类型的先验概率写成Pi)

统计学的主要部分之一是假设检验。下面描述假设检验在统计学模式识别的眼神。

贝叶斯(Bayes)判决规则

gi(X)ωi后验概率(posterior probability)。选ω1ω2的判决规则为: 如果g1(X) > g2(X),就选ω1, 不然选ω2。据贝斯定理, 判决规则能以 似然比(likelihood ratio)l(X) 表示:

$ \begin{align} & g_1(X) > g_2(X) \\ \Rightarrow & P(\omega_1|X) > P(\omega_2|X) \\ \Rightarrow & \frac{P(X|\omega_1)P(\omega_1)}{P(X)} > \frac{P(X|\omega_2)P(\omega_2)}{P(X)} \\ \Rightarrow & P(X|\omega_1)P(\omega_1) > P(X|\omega_2)P(\omega_2) \\ \Rightarrow & l(X)=\frac{P(X|\omega_1)}{P(X|\omega_2)} > \frac{P(\omega_2)}{P(\omega_1)} = k \end{align} $

k 是个常数,而且由于 P2) = 1 − P1), k 可以看待是先验概率的比值(odds) 。为了评估判决规则的效果,需要计算錯誤的概率。假如 r(X) = m'i'n[g1(X),g2(X)]贝叶斯错误(Bayes error)定义为:

$ \begin{align} \\ \epsilon & = E(r(X)) = \int min(P(\omega_1)P(X|\omega_1), P(\omega_2)P(X|\omega_2))dX \\ &= P(\omega_1) \int_{R_2}P(X|\omega_1)dX + P(\omega_2) \int_{R_1} P(X|\omega_2)dX \\ &= P(\omega_1)\epsilon_1 + P(\omega_2)\epsilon_2 \end{align} $

以上的Ri 定义为决策规则决定选 ωi的领域,然后 εiLi选错的概率。

Neyman-Pearson 测试

统计学模式识别与统计学假设检验之间的关系

如果你曾经上过入门的统计学课,你大概能想起传统的 假设检验. 如下为例子:

一位人类学研究者对一名太平岛部落,认为此部落预期寿命比一般人长。把 μ 定义为此部落预期寿命。全世界人口的预期寿命是67.2年。为了检验他的假设,他从公开记录随机选出了100个讣告作为随机样本,发现样本平均预期寿命是72,样本表春差是15。把 Xbar 定义为样本平均值,样本标准差 S,而且由于两都是来自随机样本,两都是随机变量。由于 然后用如下的假设检验.

零假设 (H0): $ \mu - 67.2 = 0 $

对立假设(Ha): $ \mu - 67.2 > 0 $

检验统计量: $ T = \frac{\bar{X} - 67.5}{\sqrt{(S^{2})/N}} \sim N(0,1) $.

决策规则: 若 $ T < Z_{\frac{\alpha}{2}} \parallel T > Z_{\frac{1-\alpha}{2}} $ 则选H0不然选Ha.


如上的 $ \alpha = </math '''P'''(判决规则让选Ha | H0正确) = '''P'''('''第一型错误''')。 反而'''第二型错误'''是判决规则让选H0|Ha正确.一般在这种假设检验,控制第一型錯誤的概率是最有限考虑。 从统计学模式识别的角度上看此假设检验,H0 和 HA是两种类别。随机特征向量是 T。研究者从T抽一次抽样值 t=(72 - 67.2)/(15 * 15 / 100) = 2。 在这<br> [[Image:http://i.imgur.com/0UzPp0H.png]] $

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach