Revision as of 19:36, 1 May 2014 by Ktahboub (Talk | contribs)

This slecture will be reviewed by Khalid Tahboub:


1) I think the first equation should be

$ F^{-1}(u)=inf\{ x|F(x)\geq u, \quad u\in [0, 1] \} $

instead of

$ F^{-1}(u)=inf\{ x|F(x)\leq u, \quad u\in [0, 1] \} $
2) How we reach
$ X <- F^{-1}(U)\quad $
from
$ F^{-1}(u)=inf\{ x|F(x)\geq u, \quad u\in [0, 1] \} $
is not very clear to me


3)I think the equation

$ F(x) = \int_{-\infty}^x \lambda exp(-\lambda x') dx' = \int_0^x \lambda exp(-\lambda x') dx' = [-exp(-\lambda x')]_0^x = 1-exp(-\lambda x) \leq u $

should be instead

$ F(x) = \int_{-\infty}^x \lambda exp(-\lambda x') dx' = \int_0^x \lambda exp(-\lambda x') dx' = [-exp(-\lambda x')]_0^x = 1-exp(-\lambda x) \geq u $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett