Revision as of 09:38, 27 April 2014 by Acharnas (Talk | contribs)

Introduction:

A simplicial complex is a special type of graph wherein the notion of a vertex is replaced with a new higher dimensional analog, called a simplex. A simplex is, in simplest terms, an n-dimensional collection of vertices enclosed by faces.




Definitions:

Graph:

     "A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes) and E, a set of edges. Each edge has either one or two vertices associated with it, called its endpoints. An edge is said to connect its endpoints."1

Simplex:

     "A simplex...is the generalization of a tetrahedral region of space to n dimensions."2


A graph is a thing made of point, some of which are linked by line segments. Generalize the idea to points that can also be grouped into triangles, or tetrahedra, etc.

For graphs we know Euler's formula E+2=V+F. Give this a geometric meaning.

Discuss (maybe in the 2-dimensional case) what might replace this formula compare a "triangulated" sphere to a "triangulated" doughnut.



1 Discrete Mathematics and Its Applications, Kenneth H. Rosen.

2 http://mathworld.wolfram.com/Simplex.html

Back to MA375 Spring 2014

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin