Revision as of 19:09, 28 January 2014 by Kaminskm (Talk | contribs)


Homework 2 collaboration area

Here it is again:

$ f(a)=\frac{1}{2\pi i}\int_\gamma \frac{f(z)}{z-a}\ dz. $


This is the place.


Exercise 1

Suppose that $ \varphi(z) $ is a continuous function on the trace of a path $ \gamma $. Prove that the function

$ f(z)=\int_{\gamma}\frac{\varphi(\zeta)}{\zeta-z}d\zeta $

is analytic on $ \mathbb{C}-\text{tr }\gamma $.


Discussion

-A function is said to be analytic on an open set $ \Omega $ if it is $ \mathbb{C} $-differentiable at every point in $ \Omega $. Since the definition of analytic involves an open set, to complete Exercise 1 we need to have an open set somewhere. Since $ \text{tr }\gamma $ is the continuous image of a compact set, it is compact. Since $ \mathbb{C} $ is a Hausdorff space, $ \text{tr }\gamma $ is closed. Alternately one can note that $ \mathbb{C} $ is homeomorphic to $ \mathbb{R}^{2} $ where we know that a compact set is closed and bounded. Since the complement of a closed set is open, $ \mathbb{C}-\text{tr }\gamma $ is open. The long and short of this is: $ \mathbb{C}-\text{tr }\gamma $ is an open set so one just has to show that $ \varphi $ is $ \mathbb{C} $-differentiable at every point in this set in order to complete the exercise.


Back to MA530, Spring 2014

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett