Revision as of 04:39, 14 December 2013 by Wang279 (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Prove of the CSFT of the signals

Yuanjun Wang

Below are CSFT of signals. The general way we solve CSFT questions is to guess its Fourier Transform, then prove it by taking the inverse F.T. of the signals.

1. $ f(x,y)=\frac{ sin(\pi x)}{\pi x} \frac{ sin(\pi y)}{\pi y} $

guess: $ F(u,v) = rect(u) rect(v) $ \\

prove: $ F^{-1}(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} rect(u) rect(v) e^{j2\pi (ux+vy)} dx dy $

because we know that $ rect(u) = \left\{ \begin{array}{ll} 1, & \text{ if } |t|<\frac{1}{2}\\ 0, & \text{ else} \end{array} \right. $

$ F^{-1}(u,v) = \int_{-\frac{1}{2}}^{\frac{1}{2}} rect(v) \int_{-\frac{1}{2}}^{\frac{1}{2}} e^{j2\pi ux} du e^{j2\pi vy} dy $

$ = \int_{-\frac{1}{2}}^{\frac{1}{2}} rect(v) \frac{e^{j\pi x} - e^{-j\pi x}}{j\pi x} e^{j2\pi vy} dy $

$ = \frac{ sin(\pi x)}{\pi x} \int_{-\frac{1}{2}}^{\frac{1}{2}} rect(v) e^{j2\pi vy} dy $

$ = \frac{ sin(\pi x)}{\pi x} \frac{ sin(\pi y)}{\pi y} $

so $ f(x,y) = \frac{ sin(\pi x)}{\pi x} \frac{ sin(\pi y)}{\pi y} $

so CSFT (f(x,y)) = rect(u) rect(v)

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach