Random Variables and Signals
Topic 7: Random Variables: Conditional Distributions
Thus far, we have learned how to represent the probabilistic behavior or random variables X using the density function f$ _X $ or the mass function p$ _X $.
Sometimes, we want to describe X probabilistically using only a small number of parameters. The expectation is often used to do this.
Definition $ \qquad $ the expected value of continuous random variable X is defined as
Definition $ \qquad $ the expected value of discrete random variable X is defined as
where $ R_X $ is the range space of X.
Note:
- E[X] is also known as the mean of X. Other notation for E[X] include:
- The equation defining E[X] for discrete X could have been derived from the continuous X, using the density function f$ _X $ containing $ \delta $-functions.
Example $ \qquad $ X is an exponential random variable. find E[X].
Let $ \mu = 1/\lambda $. We often write
Example $ \qquad $ X is a uniform discrete random varibable with $ R_X $ = {1,...,n}. Then,
Having defined E[X], we will now consider more general E[g(X)] for a function g:R → R.
Let Y = g(X). What is E[Y]? From previous definitions:
or
We can find this by first finding f$ _Y $ or p$ _Y $ in terms of g and f</math>_X,/math> or p$ _X $. Alternatively, it can be shown that
or
See Papoulis for the proof of the above.
Two important cases or functions g:
- g(x) = x. Then E[g(X)] = E[X]
- g(x) = (x - $ \mu_X)^2 $. Then E[g(X)] = E[(X - $ \mu_X)^2 $]
or
Note: $ \qquad $ E[(X - $ \mu_X)^2 $] is called the variance of X and is often denoted $ \sigma_X $$ ^2 $. $ \sigma_X $ is called the standard deviation of X.
Important property of E[]:
Let g$ _1 $:R → R; g$ _2 $:R → R; $ \alpha,\beta $ ∈ R, Then
So E[] is a linear operator. The proof follows from the linearity of integration.
Important property of Var():
Proof:
Example $ \qquad $ X is Gaussian N($ \mu,\sigma^2 $). Find E[X} and Var(X).
Let r = x - $ \mu $. Then
First term: Integrating an odd function over (-∞,∞) ⇒ first term is 0.
Second term: Integrating a Gaussian pdf over (-∞,∞) gives one ⇒ second term is $ \mu $.
So E[X] = $ \mu $
Using integration by parts, we see that this integral evaluates to $ \sigma^2+\mu^2<\math>. So, <br/> <center><math>Var(X) = \sigma^2+\mu^2-\mu^2 = \sigma^2 $</center>
Example $ \qquad $ X is Poisson with parameter $ \lambda $. Find E[X] and Var(X).
So,
$ E[X^2] = \lambda^2 +\lambda \ $
$ \Rightarrow Var(X) = \lambda^2 +\lambda - \lambda = \lambda \ $