Random Variables and Signals
Topic 8: Functions of Random Variables
We often do not work with the random variable we observe directly, but with some function of that random variable. So, instead of working with a random variable X, we might instead have some random variable Y=g(X) for some function g:R → R.
In this case, we might model Y directly to bet f$ _Y $(y), especially if we do not know g. Or we might have a model for X and find f$ _Y $(y) (or p$ _Y $(y)) as a function of f$ _X $ (or p$ _X $ and g.
We will discuss the latter approach here.
More formally, let X be a random variable on (S,F,P) and consider a mapping g:R → R. Then let Y$ (\omega)= $g(X($ \omega)) $ ∀$ \omega $ ∈ S.
We normally write this as Y=g(X).
Graphically,
Is Y a random variable? We must have Y$ ^{-1} $(A) ≡ {$ \omega $ ∈ S: Y$ (\omega) $ ∈ A} = {$ \omega $ ∈ S: g(X$ (\omega) $) ∈ A} be an element of F ∀A ∈ B(R) (Y must be Borel measurable).
We will only consider functions g in this class for which Y$ ^{-1} $(A) ∈ F ∀A ∈ B(R), so that if Y=g(X) for some random variable X, Y will be a random variable.
What is the distribution of Y? Consider 3 cases:
- X discrete, Y discrete
- X continuous, Y discrete
- X continuous, Y continuous
Note: you cannot have a continuous Y from a discrete X.
Contents
Case 1: X and Y Discrete
Let $ R_X $≡ X(S) be the range space of X and math>R_Y</math>≡ g(X(S)) be the range space of Y. Then the pmf of Y is
But this means that
Example $ \quad $ Let X be the value rolled on a die and
Then R$ _X $ = {0,1,2,3,4,5,6} and R$ _Y $ = {0,1} and g(x) = x % 2.
Now
Case 2: X Continuous, Y Discrete
The pmf of Y in this case is
Then,
Example Let g(x) = u(x - x$ _0 $) for some x$ _0 $ ∈ R, and let Y=g(X). Then $ R_Y $ = {0,1} and
So,
Case 3: X and Y Continuous
We will discuss 2 methods for finding f$ _Y $ in this case.
Approach 1
First, find the cdf F$ _Y $.
where D$ _y $ = {x ∈ R: g(x) ≤ y}.
Then
Differentiate F$ _Y $ to get f$ _y $.
You can find D$ _Y $ graphically or analytically
Example
For y = y$ _1 $ and y = y$ _2 $,
Then
Example Y = aX + b, a,b ∈ R, a ≠ 0
So,
Then
Example Y = X$ ^2 $
For y < 0, D$ _y $ = ø
For y ≥ 0,
So,
and
Approach 2
Use a formula for f$ _y $ in terms of f$ _X $. To derive the formula, assume the inverse function g$ ^{-1} $ exists, so if y = g(x), then x = g$ ^{-1} $(y). Also assume g and g$ ^{-1} $ are differentiable. Then, if Y = g(X), we have that
Proof:
First consider g monotone (strictly monotone) increasing
Since {y < Y ≤ y + Δy} = {x < X ≤ x + Δx}, we have that P(y < Y ≤ y + Δy) = P(x < X ≤ x + Δx).
Use the following approximations:
- P(y < Y ≤ y + Δy) ≈ f$ _Y $(y)Δy
- P(x < X ≤ x + Δx) ≈ f$ _X $(x)Δx
Since the left hand sides are equal,
Now as Δy → 0, we also have that Δx → 0 since g is continuous, and the approximations above become equalities. We rename Δy, Δx as dy and dx respectively, so letting Δy → 0, we get
We normally write this as
A similar derivation for g monotone decreasing gives us the general result for invertible g:
Note this result can be extended to the case where y = g(x) has n solutions x$ _1 $,...,x$ _n $, in which case,
For example, if Y = X$ ^2 $,
References
- M. Comer. ECE 600. Class Lecture. Random Variables and Signals. Faculty of Electrical Engineering, Purdue University. Fall 2013.