Revision as of 10:21, 1 October 2013 by Mhossain (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


Theorem

Intersection is commutative
$ A\cap B = B\cap A $
where $ A $ and $ B $ are sets.



Proof

$ \begin{align} A\cap B &\triangleq \{x\in\mathcal S:\;x\in A\;\mbox{and}\; x\in B\}\\ &= \{x\in\mathcal S:\;x\in B\;\mbox{and}\; x\in A\}\\ &= B\cap A\\ \blacksquare \end{align} $


Back to list of all proofs

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett