Revision as of 04:50, 23 September 2013 by Mboutin (Talk | contribs)


Practice Question, ECE438 Fall 2013, Prof. Boutin

On computing the inverse z-transform of a discrete-time signal.


Compute the inverse z-transform of

$ X(z) =\frac{1}{(3-z)(2-z)}, \quad \text{ROC} \quad |z|<2 $.

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $ (Instructor's comment: You can skip this step.)

$ = -\frac{1}{3-z}-\frac{1}{2-z} $

$ = -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}(\frac{1}{1-\frac{z}{2}}) $

$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n -\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n $

$ = \sum_{n=0}^{+\infty}[(-\frac{1}{3}) (\frac{1}{3})^n + (-\frac{1}{2})(\frac{1}{2})^n]z^n $

Let k=-n

$ = \sum_{k=-\infty}^{+\infty}u[-k][(-\frac{1}{3})3^k + (-\frac{1}{2})2^k]z^{-k} $

by comparison with z-transform formula

x[n] = u[ − n]( − 3n − 1 − 2n − 1)

Answer 2

Using a partial fraction expansion, we can change the original equation to

$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $ Where A = 1, B = -1, so we get (Instructor's comment: You can skip this explanation and write the expansion directly)

$ = -\frac{1}{3-z}-\frac{1}{2-z} $

By factoring out 1/3 for the first term, and 1/2 for the second term, we can have both terms in form of (Instructor's comment: No need to explain this.)

$ \frac{1}{1-r} $, which is equal to $ \sum_{n=0}^{+\infty} (\frac{1}{r})^n $

$ = -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}(\frac{1}{1-\frac{z}{2}}) $

$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n -\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n $

$ = \sum_{n=0}^{+\infty}[(-\frac{1}{3}) (\frac{1}{3})^n + (-\frac{1}{2})(\frac{1}{2})^n]z^n $

Then let k=-n

$ = \sum_{k=-\infty}^{+\infty}u[-k][(-\frac{1}{3})3^k + (-\frac{1}{2})2^k]z^{-k} $

Comparing it with z-transform formula, we can get

x[n] = u[ − n]( − 3n − 1 − 2n − 1)

Answer 3

First, using partial fraction we get..

$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $ (Instructor's comment: You can skip this step.)

A(2-z) + B(3-z) = 1

let z=2, then B=1

let z=3, then A=-1 (Instructor's comment: You do not need to explain how you got the A and the B. )

$ = -\frac{1}{3-z}+\frac{1}{2-z} $

$ = -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})+\frac{1}{2}(\frac{1}{1-\frac{z}{2}}) $

$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n +\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n $

$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{1}{3})^n(z)^n +\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{1}{2})^n(z)^n $

now let n = -k

$ = -\frac{1}{3}\sum_{n=0}^{+\infty} 3^{k} z^{-k} +\frac{1}{2}\sum_{n=0}^{+\infty} 2^{k}z^{-k} $

by comparison with z-transfrom formula

x[n] = − 3n − 1u[ − n] + 2n − 1u[ − n]

x[n] = ( − 3n − 1 + 2n − 1)u[ − n]


Answer 4

$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $ (Instructor's comment: You can skip this step.)

$ = -\frac{1}{3-z} - \frac{1}{2-z} $

$ = -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}(\frac{1}{1-\frac{z}{2}}) $

$ = -\frac{1}{3}\sum_{k=0}^{+\infty} (\frac{z}{3})^k -\frac{1}{2}\sum_{k=0}^{+\infty} (\frac{z}{2})^k $

$ = \sum_{k=0}^{+\infty}[(-\frac{1}{3})(\frac{1}{3})^k + (-\frac{1}{2})(\frac{1}{2})^k]u[k] * z^k $

Substitute k with -n

$ = \sum_{n=-\infty}^{+\infty}[(-\frac{1}{3})3^{-n} + (-\frac{1}{2})2^{-n}]u[-n] * z^{-n} $

Look up Z transform equation on RHEA table and see that X(z) becomes...

x[n] = ( − 3n − 1 − 2n − 1)u[ − n]


Answer 5

by partical fraction, we get,

$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $ (Instructor's comment: You can skip this step.)

$ = -\frac{1}{3-z}+\frac{1}{2-z} $

For $ \quad \text{ROC} \quad |z|<2 $

$ X(z)= -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})+\frac{1}{2}(\frac{1}{1-\frac{z}{2}}) $


$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n +\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n $

assume n=-k.

$ X(z)= -\frac{1}{3}\sum_{k=-\infty}^{0} 3^{k} z^{-k} +\frac{1}{2}\sum_{k=-\infty}^{0} 2^{k}z^{-k} $


$ = \sum_{k=-\infty}^{+\infty}u[-k][(-\frac{1}{3})3^k + \frac{1}{2}2^k]z^{-k} $

So, x[n] = (−3n-1+2n-1)u[-n]

Answer 6

$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $ (Instructor's comment: You can skip this step.)

$ = \frac{1}{2-z}-\frac{1}{3-z} $

$ = \frac{1}{2}\frac{1}{1-\frac{z}{2}}-\frac{1}{3}\frac{1}{1-\frac{z}{3}} $

By the geometric series formula,

$ X(z) = \frac{1}{2}\sum_{n=0}^{+\infty}(\frac{z}{2})^n - \frac{1}{3}\sum_{n=0}^{+\infty}(\frac{z}{3})^n $

$ = \sum_{n=0}^{+\infty}(\frac{1}{2}(\frac{1}{2})^n - \frac{1}{3}(\frac{1}{3})^n)z^n $

$ = \sum_{n=-\infty}^{+\infty}u[n]((\frac{1}{2})^{n+1} - (\frac{1}{3})^{n+1})z^n $

Substituting k = -n for n gives,

$ X(z) = \sum_{k=-\infty}^{+\infty}u[-k](\frac{1}{2}^{-k+1} - \frac{1}{3}^{k+1})z^{-k} $

$ = \sum_{k=-\infty}^{+\infty}u[-k](2^{k-1} - 3^{k-1})z^{-k} $

By comparison with the Z-transform formula,

x[n] = u[-n](2n-1-3n-1)

Answer 7

$ X(z) =\frac{1}{(3-z)(2-z)} $

$ = \frac{A}{3-z}+\frac{B}{2-z} $ (Instructor's comment: You can skip this step.) $ = -\frac{1}{3-z}-\frac{1}{2-z} $

$ = -\frac{1}{3}*(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}*(\frac{1}{1-\frac{z}{2}}) $ (Instructor's comment: Be careful! You do not mean convolution here, do you? Then you should use $ \times $ instead of $ * $.)

$ = -\frac{1}{3}\sum_{n=0}^{+\infty}(\frac{z}{3})^n -\frac{1}{2}\sum_{n=0}^{+\infty}(\frac{z}{2})^n $ $ = -\frac{1}{3}\sum_{n=0}^{+\infty}(\frac{1}{3})^n(z)^n -\frac{1}{2}\sum_{n=0}^{+\infty}(\frac{1}{2})^n(z)^n $

substituting k for -n:

$ = -\frac{1}{3}\sum_{n=0}^{+\infty}3^{k} z^{-k}-\frac{1}{2}\sum_{n=0}^{+\infty}2^{k}z^{-k} $

Using the Z transform tables to find the common transformation: (Instructor's comment: I don't understand what you mean. You should rephrase this.)

x[n] = (−3^(n−1))u[−n] - (2^(n−1))u[− n]

Back to ECE438 Fall 2013 Prof. Boutin

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin